In this study poly (4-nitrophenylazo-3-aminopyridine - formaldehyde) (PNAAP-F) and poly (4-nitroarylazo-3-chloro-6-hydroxypyridine - formaldehyde) (NAACHP-F) were synthesized via diazotization, coupling and polycondensation reactions. The structural properties of the as-synthesized dyes were acquired using Fourier-transform infrared spectroscopy (FTIR) and UV-visible absorption maxima and their color, yield, melting point, solubility, and viscosity were determined via standard methods. UV-visible and FTIR results show successful formation of the polymeric dyes due to shift of wavelength of maximum absorption () (440-490 nm, 480-540 nm) and new absorption peak at around (2780-2995 cm) for methylene bridge respectively. The dyes were found to be of good yield (monomeric: 73.3%-87.2 %, polymeric: 53.8%-76.6 %), low melting point (monomeric: 112.6-121.2, and 136.0-137.0 °C, while polymeric: 134.0-144.5, and 149.4-154.7 °C), soluble in some solvents. The dyeing activity was carried out and assessed on nylon and polyester fabrics using the standard methods. The dyeing process was carried out via high temperature and carrier dyeing methods. The dyeing properties of the synthesized dyes were compared with those of commercial disperse dyes (terasil brilliant violet and terasil scarlet, brown). The dyeings of nylon and polyester had a very attractive hue and the color ranges from yellow and deep yellow shades with very good to excellent fastness to light, washing, hot pressing, and rubbing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10446942PMC
http://dx.doi.org/10.55730/1300-0527.3484DOI Listing

Publication Analysis

Top Keywords

commercial disperse
8
disperse dyes
8
melting point
8
standard methods
8
nylon polyester
8
methods dyeing
8
dyes
6
dyeing
5
comparative study
4
study dyeing
4

Similar Publications

A cost-effective industrial TiOSO solution was employed to fabricate visible light active sulfur-doped titanium dioxide (S-TiO) via a facile hydrothermal method. The effect of calcination temperature on morphology, particle size, crystallinity, and photocatalytic property of S-TiO was systematically investigated. Successful incorporation of sulfur into TiO was confirmed by carbon-sulfur analysis, X-ray photoelectron spectroscopy (XPS), and Energy dispersive spectrometer (EDS).

View Article and Find Full Text PDF

The demand for nondairy and plant-based products has increased, but there is still a need for more information about and improvement in these products, especially when it comes to frozen desserts. Similar to ice cream, which simultaneously is an emulsion, dispersion, and foam, nondairy frozen desserts also have a complex structure. As a starting point, 15 commercial nondairy frozen desserts, marketed as offering an ice cream-like experience, were purchased and evaluated for compositional, physical, structural, rheological, and meltdown properties.

View Article and Find Full Text PDF

Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated.

View Article and Find Full Text PDF

Supersaturated Gel Formulation (SGF) of Atorvastatin at a Maximum Dose of 80 mg with Enhanced Solubility, Dissolution, and Physical Stability.

Gels

December 2024

College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea.

The objective of this work was to develop a supersaturated gel formulation (SGF) loaded with the maximum atorvastatin calcium trihydrate (ATR) dose. The maximum dose strength of ATR needs to be reduced through improving solubility and dissolution rate to mitigate side effects due to the necessity of taking high doses. ATR has highly pH-dependent solubility at 37 °C, leading to poor solubility (<10 μg/mL) in stomach acid (pH 1.

View Article and Find Full Text PDF

During deepwater drilling, the low mudline temperatures and narrow safe density window pose serious challenges to the safe and efficient performance of deepwater water-based drilling fluids. Low temperatures can lead to physical and chemical changes in the components of water-based drilling fluids and the behavior of low temperature gelation. As a coarse dispersion system, water-based drilling fluid has a complex composition of dispersed phase and dispersing medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!