Adhesion G protein-coupled receptors (aGPCRs) constitute the second largest subclass of the GPCR superfamily. Although canonical GPCRs are explored pharmacologically as drug targets, no clinically approved drugs target the aGPCR family so far. The aGPCR GPR56/ADGRG1 stands out as an especially promising target, given its direct link to the monogenetic disease bilateral frontoparietal polymicrogyria and implications in cancers. Key to understanding GPCR pharmacology has been mapping out intracellular signalling activity. Detection of GPCR signalling in the Gα /Gα /Gα G protein pathways is feasible with second messenger detection systems. However, in the case of Gα -coupled receptors, like GPR56, signalling detection is more challenging due to the lack of direct second messenger generation. To overcome this challenge, we engineered a Gα chimera to translate Gα signalling. We show the ability of the chimeric Gα and Gα to translate basal Gα signalling of GPR56 to a Gα readout in transcription factor luciferase reporter systems and show that the established peptide ligands (P7 and P19) function to enhance this signal. We further demonstrate the ability to directly influence the generation of second messengers in inositol-3-phosphate assays. In the future, these chimeric G proteins could facilitate basic functional studies, drug screenings and deorphanization of other aGPCRs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/bcpt.13935DOI Listing

Publication Analysis

Top Keywords

9
gpr56 signalling
8
signalling gα
8
second messenger
8
gα signalling
8
signalling
6
re-routing gpr56
4
gα protein
4
protein chimeras
4
chimeras adhesion
4

Similar Publications

Low fertility in cows leads to early removal from herds. Since reproductive traits are complex and have low heritability, genetic analysis can aid in improving reproduction. This study identified key genes linked to fertility by conducting genome- and transcriptome-wide association studies, RNA-seq analysis, meta-analysis, weighted gene co-expression network analysis, and functional enrichment analysis.

View Article and Find Full Text PDF

Arbuscular mycorrhizal Fungi (AMF) are essential in agriculture and are often inter-linked with glomalin-related soil protein (GRSP) production which supports binding of aggregates, enhanced SOC and biological attributes. However, conservation agricultural practices in agroecosystem may have significant impact on AMF diversity, GRSP and soil quality-related parameters (SQRPs). This current experiment was implemented to gauge AMF conization percentage (AMF-CP), GSRP and significant changes on critical SQRPs, and to investigate the linkages between AMF-CP, GRSP and SQRPs as influenced by synergistic tillage and weed management in CA.

View Article and Find Full Text PDF

The effectiveness of guanidinoacetic acid (GAA) in reduced protein (RP) diets on performance and gut health of broilers under heat stress is largely unknown. A 35-d experiment was conducted using four dietary treatments: a standard protein diet (SP, 22.1 and 20.

View Article and Find Full Text PDF

Dominantly inherited intronic GAA repeat expansions in the fibroblast growth factor 14 gene have recently been shown to cause spinocerebellar ataxia 27B. Currently, the pathogenic threshold of (GAA) repeat units is considered highly penetrant, while (GAA) is likely pathogenic with reduced penetrance. This study investigated the frequency of the GAA repeat expansion and the phenotypic profile in a Cypriot cohort with unresolved late-onset cerebellar ataxia.

View Article and Find Full Text PDF

Background: Friedreich ataxia is a rare neurodegenerative disorder caused by frataxin deficiency. Both underweight and overweight occur in mitochondrial disorders, each with adverse health outcomes. We investigated the longitudinal evolution of anthropometric abnormalities in Friedreich ataxia and the hypothesis that both weight loss and weight gain are associated with faster disease progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!