The ability to determine the purity (% controlled compound) of drug-of-abuse samples is necessary for public health and law enforcement. Here, we describe the assessment of atmospheric solids analysis probe (ASAP) for the rapid determination of drug purity for a set of formulated pharmaceuticals, chosen due to their availability, uncontrolled status and consistency. Paracetamol and loratadine were used as models of high and low purity compounds being ~90% and ~10% active ingredient, respectively. Individual tablets were ground up and diluted in an internal standard solution. The resulting samples were analysed by ASAP coupled to a Waters QDa mass spectrometer followed by confirmatory testing by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The inclusion of a non-matched internal standard (quinine) improved linearity and repeatability of drug analysis by ASAP-MS. Levels of drug purity using formulated pharmaceutical tablets were found to be highly comparable with results produced by the 'gold standard' LC-MS/MS technique. Rapid determination of drug purity is therefore possible with ASAP-MS for highly concentrated samples with minimal sample preparation. It may be possible to use this deployable system to determine drug purity outside of a laboratory setting.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dta.3568DOI Listing

Publication Analysis

Top Keywords

drug purity
20
rapid determination
12
determination drug
12
assessment atmospheric
8
atmospheric solids
8
solids analysis
8
analysis probe
8
internal standard
8
purity
7
drug
6

Similar Publications

Systematic Evaluation of Extracellular Coating Matrix on the Differentiation of Human-Induced Pluripotent Stem Cells to Cortical Neurons.

Int J Mol Sci

December 2024

Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Induced pluripotent stem cell (iPSC)-derived neurons (iNs) have been widely used as models of neurodevelopment and neurodegenerative diseases. Coating cell culture vessels with extracellular matrixes (ECMs) gives structural support and facilitates cell communication and differentiation, ultimately enhances neuronal functions. However, the relevance of different ECMs to the natural environment and their impact on neuronal differentiation have not been fully characterized.

View Article and Find Full Text PDF

Extracellular Vesicles: Advanced Tools for Disease Diagnosis, Monitoring, and Therapies.

Int J Mol Sci

December 2024

Department of Experimental Biology, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain.

Extracellular vesicles (EVs) are a heterogeneous group of membrane-encapsulated vesicles released by cells into the extracellular space. They play a crucial role in intercellular communication by transporting bioactive molecules such as proteins, lipids, and nucleic acids. EVs can be detected in body fluids, including blood plasma, urine, saliva, amniotic fluid, breast milk, and pleural ascites.

View Article and Find Full Text PDF

Analytical Characterization of Aberrant Trisulfide Bond Formation in Therapeutic Proteins and Their Impact on Product Quality.

J Pharm Sci

January 2025

Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.. Electronic address:

Post translational modifications (PTMs) of proteins play an integral role in maintaining the overall structure and function of proteins including their proper folding, binding, and potency. However, not all PTMs play a positive role in protein drugs as some can lead to product-related impurities that negatively impact protein function. One example of a PTM is trisulfide formation, which appears as a product related species in multiple biologic drug products.

View Article and Find Full Text PDF

Biomedical Application Prospects of Gadolinium Oxide Nanoparticles for Regenerative Medicine.

Pharmaceutics

December 2024

Department of Hospital Surgery, Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technology, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.

Background/objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (GdO NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines.

Methods: The powder of GdO NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of GdO NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source.

View Article and Find Full Text PDF

A QbD Approach for the Formulation and Control of Triclabendazole in Uncoated Tablets: From Polymorphs to Drug Formulation.

Pharmaceutics

December 2024

Área de Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Instituto de Química Rosario (IQUIR, CONICET-UNR), Suipacha 531, Rosario S2002LRK, Argentina.

Triclabendazole (TCB) is a well-established anthelmintic effective in treating fascioliasis, a neglected tropical disease. This study employs quality by design (QbD) to investigate the impact of TCB polymorphism and pharmacotechnical variables, from the development of immediate-release tablets to process optimization and green analysis. Critical process parameters (CPPs) and critical material attributes (CMAs), characterized by type of polymorph, composition of excipients (talc, lactose, cornstarch, and magnesium stearate), and compression force, were screened using a Plackett-Burman design (n = 24), identifying polymorphic purity and cornstarch as a CPP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!