The quest of a nonlinear optical material that can be easily nanostructured over a large surface area is still ongoing. Here, we demonstrate a nanoimprinted nonlinear barium titanate 2D nanohole array that shows the optical properties of a 2D photonic crystal and a metasurface, depending on the direction of the optical axis. The challenge of nanostructuring the inert metal-oxide is resolved by direct soft nanoimprint lithography with sol-gel derived barium titanate enabling critical dimensions of 120 nm with aspect ratios of five. The nanohole array exhibits a photonic bandgap in the infrared range when probed along the slab axis, while lattice resonant states are observed in out-of-plane transmission configuration. The enhanced light-matter interaction from the resonant structure enables to increase in the second-harmonic generation in the near-ultraviolet by a factor of 18 illustrating the potential in the flexible fabrication technique for barium titanate photonic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202304355 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!