Background: The natural products, metabolites, of gut microbes are crucial effect factors on diseases. Comprehensive identification and annotation of relationships among disease, metabolites, and microbes can provide efficient and targeted solutions towards understanding the mechanism of complex disease and development of new markers and drugs.
Results: We developed Gut Microbial Metabolite Association with Disease (GMMAD), a manually curated database of associations among human diseases, gut microbes, and metabolites of gut microbes. Here, this initial release (i) contains 3,836 disease-microbe associations and 879,263 microbe-metabolite associations, which were extracted from literatures and available resources and then experienced our manual curation; (ii) defines an association strength score and a confidence score. With these two scores, GMMAD predicted 220,690 disease-metabolite associations, where the metabolites all belong to the gut microbes. We think that the positive effective (with both scores higher than suggested thresholds) associations will help identify disease marker and understand the pathogenic mechanism from the sense of gut microbes. The negative effective associations would be taken as biomarkers and have the potential as drug candidates. Literature proofs supported our proposal with experimental consistence; (iii) provides a user-friendly web interface that allows users to browse, search, and download information on associations among diseases, metabolites, and microbes. The resource is freely available at http://guolab.whu.edu.cn/GMMAD .
Conclusions: As the online-available unique resource for gut microbial metabolite-disease associations, GMMAD is helpful for researchers to explore mechanisms of disease- metabolite-microbe and screen the drug and marker candidates for different diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464125 | PMC |
http://dx.doi.org/10.1186/s12864-023-09599-5 | DOI Listing |
Nutrients
January 2025
School of Pharmacy, Shaoyang University, Shaoyang 422000, China.
Depression, a serious mental illness, is characterized by high risk, high incidence, persistence, and tendency to relapse, posing a significant burden on global health. The connection between depression and gut microbiota is an emerging field of study in psychiatry and neuroscience. Understanding the gut-brain axis is pivotal for understanding the pathogenesis and treatment of depression.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
Alcohol is the second-most misused substance after tobacco. It has been identified as a causal factor in more than 200 diseases and 5.3% of all deaths and is associated with significant behavioral, social, and economic difficulties.
View Article and Find Full Text PDFMicroorganisms
January 2025
Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus.
For decades, Alzheimer's Disease (AD) research has focused on the amyloid cascade hypothesis, which identifies amyloid-beta (Aβ) as the primary driver of the disease. However, the consistent failure of Aβ-targeted therapies to demonstrate efficacy, coupled with significant safety concerns, underscores the need to rethink our approach to AD treatment. Emerging evidence points to microbial infections as environmental factors in AD pathoetiology.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
Cocaine use disorder remains a major global health concern, with growing evidence that the gut microbiome modulates drug-related behaviors. This study examines the microbiome's role in cocaine-induced psychomotor activation and context-dependent reward responses using germ-free (GF) and antibiotic-treated (ABX) models. In GF mice, the absence of a microbiome blunted cocaine-induced psychomotor activation ( = 0.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Biochemistry & Microbiology, Rutgers University, New Brunswick, NJ 08901, USA.
Breastfeeding supplies nutrition, immunity, and hormonal cues to infants. Feeding expressed breast milk may result in de-phased milk production and feeding times, which distort the real-time circadian cues carried by breast milk. We hypothesized that providing expressed breast milk alters the microbiotas of both breast milk and the infant's gut.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!