A four-point molecular handover during Okazaki maturation.

Nat Struct Mol Biol

Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands.

Published: October 2023

DNA replication introduces thousands of RNA primers into the lagging strand that need to be removed for replication to be completed. In Escherichia coli when the replicative DNA polymerase Pol IIIα terminates at a previously synthesized RNA primer, DNA Pol I takes over and continues DNA synthesis while displacing the downstream RNA primer. The displaced primer is subsequently excised by an endonuclease, followed by the sealing of the nick by a DNA ligase. Yet how the sequential actions of Pol IIIα, Pol I polymerase, Pol I endonuclease and DNA ligase are coordinated is poorly defined. Here we show that each enzymatic activity prepares the DNA substrate for the next activity, creating an efficient four-point molecular handover. The cryogenic-electron microscopy structure of Pol I bound to a DNA substrate with both an upstream and downstream primer reveals how it displaces the primer in a manner analogous to the monomeric helicases. Moreover, we find that in addition to its flap-directed nuclease activity, the endonuclease domain of Pol I also specifically cuts at the RNA-DNA junction, thus marking the end of the RNA primer and creating a 5' end that is a suitable substrate for the ligase activity of LigA once all RNA has been removed.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41594-023-01071-yDOI Listing

Publication Analysis

Top Keywords

rna primer
12
four-point molecular
8
molecular handover
8
dna
8
polymerase pol
8
pol iiiα
8
dna ligase
8
dna substrate
8
pol
7
primer
6

Similar Publications

Pyrimidinergic P2Y1-Like Nucleotide Receptors Are Functional in Rat Conjunctival Goblet Cells.

Invest Ophthalmol Vis Sci

January 2025

Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.

Purpose: To investigate the presence of uridine-5'-triphosphate (UTP)-activated P2Y1-like nucleotide receptors (P2Y2R, P2Y4R, and P2Y6R) in conjunctival goblet cells (CGCs) and determine if they increase intracellular Ca2+ concentration ([Ca2+]i) and induce mucin secretion.

Methods: Adult, male rat conjunctiva was used for culture of CGCs. To investigate the expression of P2YRs, mRNA was extracted from CGCs and used for reverse transcription PCR (RT-PCR) with commercially obtained primers specific to P2Y2R, P2Y4R, and P2Y6R.

View Article and Find Full Text PDF

Genomic and evolutionary analysis of epidemic porcine hepatitis E virus (HEV) in the Tibetan Plateau was performed. Faecal samples were collected from 216 Tibetan pigs and 78 Tibetan Yorkshire (Large White) and 53 tissue samples from Yorkshire from the Linzhi City slaughterhouse. Total RNA was extracted from faeces and fragments of HEV open reading frame 2 (ORF2) detected by reverse transcription and nested polymerase chain reaction (RT-nPCR) and cloned.

View Article and Find Full Text PDF

The human genome contains numerous repetitive nucleotide sequences that display a propensity to fold into non-canonical DNA structures including G-quadruplexes (G4s). G4s have both positive and negative impacts on various aspects of nucleic acid metabolism including DNA replication, DNA repair and RNA transcription. Poly (ADP-ribose) polymerase (PARP1), an important anticancer drug target, has been recently shown to bind a subset of G4s, and to undergo auto-PARylation.

View Article and Find Full Text PDF

We identified seven distinct coronaviruses (CoVs) in bats from Brazil, classified into 229E-related (Alpha-CoV), Nobecovirus, Sarbecovirus, and Merbecovirus (Beta-CoV), including one closely related to MERS-like CoV with 82.8% genome coverage. To accomplish this, we screened 423 oral and rectal swabs from 16 different bat species using molecular assays, RNA sequencing, and evolutionary analysis.

View Article and Find Full Text PDF

First Report of Causing Root Rot on Tulip Poplar in Tennessee and the United States.

Plant Dis

January 2025

Tennessee State University, Otis Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, Tennessee, United States, 37110;

Tulip poplar () is a member of the Magnolia family, is a large, fast-growing, long-lived, deciduous tree native to eastern North America. One-year-old tulip poplar seedlings grown under field conditions in a commercial nursery in Warren County, Tennessee, exhibited severe root rot in May 2024. Dark brown to black lesions were observed on the affected roots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!