When a sailfish circles to corral a school of flying fish in a vortex near the ocean surface, a tiny patch of arced surface waves confined to oppositely placed 70° sectors appears dispersing coherently, but why? It is modeled that, when the fish motions stop suddenly, the corralled school compacts, the tail shed propulsion vortices touch, break and radiate the pressure released from the centrifugal vortex rotation creating an acoustic monopole. The surface-wave patch is a section of the sphere of radiation. The oppositely placed curved bodies of the sailfish and the flying fish act as concave acoustic mirrors about the monopole creating a reverberating bell-shaped cloak in between which vibrates the ear bones and bladders of the flying fish disorienting them. A cup of water firmly struck on a table induces a similar vibration of a purely radial mode. The sailfish circles around the school at a depth where the wind induced underwater toroidal motion in the vertical plane becomes negligible such that the flying fish is unable to sense the tailwind direction above, limiting the ability to swim up and emerge in the right direction to glide. Experiments confirm that the flying fish tail rigidity is too low for a quick ballistic exit, which is not called for either.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449807PMC
http://dx.doi.org/10.1038/s41598-023-40986-wDOI Listing

Publication Analysis

Top Keywords

flying fish
20
sailfish circles
8
fish
7
flying
5
acoustic predation
4
predation sailfish-flying
4
sailfish-flying fish
4
fish cloak
4
cloak sailfish
4
circles corral
4

Similar Publications

Approaching threats are perceived through visual looming, a rapid expansion of an image on the retina. Visual looming triggers defensive responses such as freezing, flight, turning, or take-off in a wide variety of organisms, from mice to fish to insects. In response to looming, flies perform rapid evasive turns known as saccades.

View Article and Find Full Text PDF

Understanding how ecological communities assemble in relation to natural and human-induced environmental changes is critical, particularly for communities of pollinators that deliver essential ecosystem services. Despite widespread attention to interactions between functional traits and community responses to environmental changes, the importance of sensory traits has received little attention. To address this, we asked whether visual traits of bumblebee communities varied at large geographical scales along a habitat gradient of increased tree cover.

View Article and Find Full Text PDF

The composition of assemblages, diet and behavior of waterbird species with similar ecological features are important aspects in the functioning of aquatic ecosystems. Closely related animal species often share resources such as space and food in ways that reduce competition, but if the diets of different species strongly overlap, interspecific competition may intensify. This analysis examined behavioral data relating to Great Egret, Little Egret, and Squacco Heron to explore their foraging efficiencies in rich aquatic habitats in an arid zone during post-breeding movements.

View Article and Find Full Text PDF

Polybrominated diphenyl ethers (PBDEs) and their alternative halogenated flame retardants (AHFRs) have gained global attention due to their ubiquitous occurrence, bioaccumulation, and toxic properties. However, the biomagnification of halogenated flame retardants (HFRs), particularly AHFRs, in various food chains is not yet well understood. In this study, yellowfin tuna (Thunnus albacares), along with its prey, flying squid (Sthenoteuthis oualaniensis) and round scad (Decapterus maruadsi), were sampled from the South China Sea (SCS) to investigate the biomagnification potential of PBDEs and AHFRs, including dechlorane plus (DP) and decabromodiphenyl ethane (DBDPE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!