Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An electrochemical immunosensor based on carbon nanofibers (CNFs) and gold nanoparticles (AuNPs) was developed for detecting anti-Toxoplasma gondii antibodies (anti-T. gondii) IgG in human serum. CNFs were produced using electrospinning and carbonization processes. Screen-printed carbon electrode (SPCE) surface was modified with CNFs and AuNPs which were electrodeposited onto the CNFs. Then, T. gondii antigen was immobilized onto the AuNPs/CNFs/SPCE. Afterward, anti-T. gondii IgG positive serum samples were coated on the modified electrode and assessed via adding anti-human IgG labeled with horseradish peroxidase (HRP) enzyme. The morphology of SPCE, CNFs, and AuNPs/CNFs/SPCE surface was characterized using field emission scanning electron microscopy (FESEM) equipped with energy dispersive spectroscopy (EDS). Characterization of CNFs was evaluated by Raman spectroscopy and X-ray diffraction (XRD). Electrochemical characterization of the immunosensor was verified using cyclic voltammetry (CV), and electrochemical response of modified electrode for anti-T. gondii IgG was detected via differential pulse voltammetry (DPV). This immunosensor was detected in the range 0-200 U mL with a low detection limit (9 × 10 U mL). In addition, the proposed immunosensor was exhibited with high selectivity, strong stability, and acceptable reproducibility and repeatability. Furthermore, there was a strong correlation between results obtained via the designed immunosensor and enzyme-linked immunosorbent assay (ELISA) as gold standard. In conclusion, the developed immunosensor is a promising route for rapid and accurate clinical diagnosis of toxoplasmosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-023-05928-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!