Several studies have shown beneficial effects of short exposure to oxidative stress on stored fruit, such as better preservation, increased firmness, preservation of polyphenolic compounds, and reduced risk of postharvest disorders such as bitter pit and superficial scald in apples. In this study the effect of short-term oxidative stress conditions on the physiology of apple fruit was investigated. Apple fruit of three cultivars were exposed to hypoxic storage conditions of various lengths to induce anaerobiosis. The response of apple fruit to short-term oxidative stress was evaluated by means of cell wall immunolabeling and atomic force microscopy. In addition, the antioxidant capacity and antioxidative activity of apple peels was assessed. Through various techniques, it was shown that short-term oxidative stress conditions promote specific enzymatic activity that induces changes in the cell wall of apple fruit cells. Exposure to short-term stress resulted in the remodeling of cell wall pectic polysaccharides, observed as an increase in the size and complexity of extracted oxalate pectin. Structural changes in the cell wall were followed by an increase in Young's modulus (compressive stiffness of a solid material, expressed as the relationship between stress and axial strain) of the cell wall material. The data presented in this paper show in a novel way how storage under short-term oxidative stress modifies the cell wall of apple fruit at the molecular level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449782 | PMC |
http://dx.doi.org/10.1038/s41598-023-40782-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!