Microbial strategies for resource use are an essential determinant of their fitness in complex habitats. When facing environments with multiple nutrients, microbes often use them sequentially according to a preference hierarchy, resulting in well-known patterns of diauxic growth. In theory, the evolutionary diversification of metabolic hierarchies could represent a mechanism supporting coexistence and biodiversity by enabling temporal segregation of niches. Despite this ecologically critical role, the extent to which substrate preference hierarchies can evolve and diversify remains largely unexplored. Here, we used genome-scale metabolic modeling to systematically explore the evolution of metabolic hierarchies across a vast space of metabolic network genotypes. We find that only a limited number of metabolic hierarchies can readily evolve, corresponding to the most commonly observed hierarchies in genome-derived models. We further show how the evolution of novel hierarchies is constrained by the architecture of central metabolism, which determines both the propensity to change ranks between pairs of substrates and the effect of specific reactions on hierarchy evolution. Our analysis sheds light on the genetic and mechanistic determinants of microbial metabolic hierarchies, opening new research avenues to understand their evolution, evolvability, and ecology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476156PMC
http://dx.doi.org/10.1093/molbev/msad187DOI Listing

Publication Analysis

Top Keywords

metabolic hierarchies
16
hierarchies
8
hierarchies evolve
8
metabolic
6
evolution
5
architecture metabolic
4
metabolic networks
4
networks constrains
4
constrains evolution
4
evolution microbial
4

Similar Publications

Cold stress in winter is one of the most severe abiotic stresses on plant growth and flourishing, and the selection of cold tolerant genotypes is an important strategy to ensure the safety of plant growth and development. Cyclocarya paliurus, a diclinous and versatile tree species originally in subtropical regions, has been introduced and cultivated in the warm temperate zone of China to meet the increasing market demand for its leaf yield. However, information regarding its cold tolerance remains limited.

View Article and Find Full Text PDF

We describe a novel Malassezia species named Malassezia polysorbatinonusus, isolated from a Japanese patient with seborrheic dermatitis. The internal transcribed spacer (ITS) region of the isolate (LSEM 4845) were only 94.7% identical to those of M.

View Article and Find Full Text PDF

Background: Pancreatic enucleation is indicated for selected patients and tumours with very low oncological risk to preserve a maximum of healthy pancreatic parenchyma. Minimally invasive pancreatic enucleation (MIPE) is increasingly performed. This study aims to assess the impact of tumor location and center experience on textbook outcomes (TBO) in patients undergoing MIPE.

View Article and Find Full Text PDF

SNARE proteins play a pivotal role in membrane fusion and various cellular processes. Accurate identification of SNARE proteins is crucial for elucidating their functions in both health and disease contexts. This chapter presents a novel approach employing multiscan convolutional neural networks (CNNs) combined with position-specific scoring matrix (PSSM) profiles to accurately recognize SNARE proteins.

View Article and Find Full Text PDF

Procalcitonin (PCT) is a reliable biomarker for diagnosing and monitoring bacterial infections and sepsis. PCT exhibits good stability both in vivo and in vitro, and its levels drastically increase in response to bacterial infection or inflammatory reactions in the human body, making it a dependable indicator for sepsis diagnosis and monitoring with significant implications for clinical diagnosis and treatment guidance. Currently, immunosensors are widely utilized in PCT detection due to their high sensitivity and low detection limits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!