Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are associated with various complex human diseases. They can serve as disease biomarkers and hold considerable promise for the prevention and treatment of various diseases. The traditional random walk algorithms generally exclude the effect of non-neighboring nodes on random walking. In order to overcome the issue, the neighborhood constraint (NC) approach is proposed in this study for regulating the direction of the random walk by computing the effects of both neighboring nodes and non-neighboring nodes. Then the association matrix is updated by matrix multiplication for minimizing the effect of the false negative data. The heterogeneous lncRNA-disease network is finally analyzed using an unbalanced random walk method for predicting the potential lncRNA-disease associations. The LUNCRW model is therefore developed for predicting potential lncRNA-disease associations. The area under the curve (AUC) values of the LUNCRW model in leave-one-out cross-validation and five-fold cross-validation were 0.951 and 0.9486 ± 0.0011, respectively. Data from published case studies on three diseases, including squamous cell carcinoma, hepatocellular carcinoma, and renal cell carcinoma, confirmed the predictive potential of the LUNCRW model. Altogether, the findings indicated that the performance of the LUNCRW method is superior to that of existing methods in predicting potential lncRNA-disease associations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2023.115297DOI Listing

Publication Analysis

Top Keywords

potential lncrna-disease
16
lncrna-disease associations
16
random walk
16
predicting potential
12
luncrw model
12
neighborhood constraint
8
non-neighboring nodes
8
cell carcinoma
8
luncrw
5
potential
5

Similar Publications

Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), play crucial roles in gene expression regulation and are significant in disease associations and medical research. Accurate ncRNA-disease association prediction is essential for understanding disease mechanisms and developing treatments. Existing methods often focus on single tasks like lncRNA-disease associations (LDAs), miRNA-disease associations (MDAs), or lncRNA-miRNA interactions (LMIs), and fail to exploit heterogeneous graph characteristics.

View Article and Find Full Text PDF

Exploring potential association between long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and diseases is an essential part of prevention, diagnosis and treatment of diseases. Since determining these relationships experimentally is resource-intensive and time-consuming, therefore computational methods have emerged as an attractive way to address this issue. However, existing computational approaches for inferring lncRNA-disease associations (LDA), miRNA-disease associations (MDA) and lncRNA-miRNA interactions (LMI) tend to focus on single task, neglecting the benefits of leveraging multiple biomolecular interactions and domain-specific knowledge for multi-task prediction.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) have emerged as significant contributors to the regulation of various biological processes, and their dysregulation has been linked to a variety of human disorders. Accurate prediction of potential correlations between lncRNAs and diseases is crucial for advancing disease diagnostics and treatment procedures. The authors introduced a novel computational method, iGATTLDA, for the prediction of lncRNA-disease associations.

View Article and Find Full Text PDF

Identifying the associations between long noncoding RNAs (lncRNAs) and disease is critical for disease prevention, diagnosis and treatment. However, conducting wet experiments to discover these associations is time-consuming and costly. Therefore, computational modeling for predicting lncRNA-disease associations (LDAs) has become an important alternative.

View Article and Find Full Text PDF

Identifying new relevant long noncoding RNAs (lncRNAs) for various human diseases can facilitate the exploration of the causes and progression of these diseases. Recently, several graph inference methods have been proposed to predict disease-related lncRNAs by exploiting the topological structure and node attributes within graphs. However, these methods did not prioritize the target lncRNA and disease nodes over auxiliary nodes like miRNA nodes, potentially limiting their ability to fully utilize the features of the target nodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!