Recently, the enhanced penetration and retention (EPR) effect of nano-preparations has been questioned. Whether the vascular endothelial cell gap (VECG) is the main transport pathway of nano-preparations has become a hot issue at present. Therefore, we propose an in vitro biomimetic experimental system that demonstrates the transvascular transport of nano-preparation. Based on the tumor growth process, the experimental system was used to simulate the change process of abnormal factors (vascular endothelial cell gap and interstitial fluid pressure (IFP)) in the tumor microenvironment. The influence of change in the abnormal factors on the enhanced penetration and retention effect of nano-preparation was explored, and simulation verification was performed. The results show that when the interstitial fluid pressure is close to the vascular fluid pressure (VFP), the transport of nano-preparation is obstructed, resulting in the disappearance of enhanced penetration and retention effect of the nano-preparation. This indicates that the pressure gradient between vascular fluid pressure and interstitial fluid pressure determines whether the enhanced penetration and retention effect of nano-preparations can exist.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mvr.2023.104597DOI Listing

Publication Analysis

Top Keywords

fluid pressure
20
enhanced penetration
16
penetration retention
16
experimental system
12
transport nano-preparation
12
interstitial fluid
12
vitro biomimetic
8
biomimetic experimental
8
transvascular transport
8
vascular endothelial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!