Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by cognition decline and memory deterioration. The molecular pathogenic mechanism of AD is highly complex and still not completely clarified. While stem cell-based therapy for AD has been considered an optimal choice with specific properties however, immune rejection and risk of malignant transformation limit their therapeutic application. Growing evidence suggest that mitochondrial dysfunction has a critical role in the progression of AD. Since there have not been any effective treatment for AD, the drugs targeted to mitochondria may hold a great promise Therefore, the major objective of this study is to evaluate the therapeutic applicability of transplanting MSCderived mitochondria as a neuroprotective biomolecule in Alzheimer's disease pathology. The hallmarks of AD i.e aggregation of Aβ protein and Tau protein were generated to mimic the AD like pathology in vitro. Further, morphology analysis, cell viability assay, and immunofluorescence assay have been done for validation. Mitochondria were isolated from dental pulp stem cell (DPSC) and their effect on internalization by neural cells was demonstrated by cell proliferation analysis and uptake studies while their therapeutic potential was characterized by morphology analysis, ROS study, and immunofluorescence analysis. We observed that internalization of DPSC-derived mitochondria led to significant neuroprotective in the cellular AD. Based on our results, it may be concluded that mesenchymal stem cellderived mitochondria can emerge as a potentially safe and effective modality in Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2023.148544DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
morphology analysis
8
mitochondria
6
mitochondria transfer
4
transfer potential
4
therapeutic
4
potential therapeutic
4
therapeutic mechanism
4
alzheimer's
4
mechanism alzheimer's
4

Similar Publications

Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD), a hallmark of age-related cognitive decline, is defined by its unique neuropathology. Metabolic dysregulation, particularly involving glutamine (Gln) metabolism, has emerged as a critical but underexplored aspect of AD pathophysiology, representing a significant gap in our current understanding of the disease.

Methods: To investigate the involvement of GlnMgs in AD, we conducted a comprehensive bioinformatic analysis.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a prominent neurodegenerative disorder affecting the central nervous system in the elderly. Current understanding of AD primarily centers on the gradual decline in cognitive and memory functions, believed to be influenced by factors including mitochondrial dysfunction, β-amyloid aggregation, and neuroinflammation. Emerging research indicates that neuroinflammation plays a significant role in the development of AD, with the inflammasome potentially mediating inflammatory responses that contribute to neurodegeneration.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a progressive neurodegenerative disorder, is frequently associated with musculoskeletal complications, including sarcopenia and osteoporosis, which substantially impair patient quality of life. Despite these clinical observations, the molecular mechanisms linking AD to bone loss remain insufficiently explored. In this study, we examined the femoral bone microarchitecture and transcriptomic profiles of APP/PS1 transgenic mouse models of AD to elucidate the disease's impact on bone pathology and identify potential gene candidates associated with bone deterioration.

View Article and Find Full Text PDF

Cognitive reserve, a component of resilience, may be conceptualized as the ability to overcome accumulating neuropathology and maintain healthy aging and function. However, research measuring and evaluating it in American Indians is needed. We recruited American Indians from 3 regional centers for longitudinal examinations (2010-13, n = 818; 2017-19, n = 403) including MRI, cognitive, clinical, and questionnaire data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!