Panax notoginseng is one of the most valuable medicinal species. However, its mitochondrial genome has not been reported yet. We aimed to determine the mitogenome sequence of P. notoginseng. We de novo assembled the mitogenome with Illumina short reads and Nanopore long reads. The mitochondrial genome of P. notoginseng has a multipartite structure consisting of interconversion between a "master circle" and numerous "subgenomic circles" through recombinations mediated by 64 pairs of repetitive sequences. Among the multipartite structure, seven subgenomic circles were best supported. Six of the seven subgenomic circles shared an 852 bp conserved fragment. The complete mitogenome of P. notoginseng was 662,479 bp long including 34 mitochondrial protein-coding genes (PCGs), three rRNA, and 19 tRNA genes. We identified 166 microsatellite repeats and 26 long-tandem repeats. Phylogenetic analysis resolved a tree that was mostly congruent with the phylogeny of Apiales species described in the APG IV system and the tree built with the chloroplast genome sequences. A total of 12 mitochondrial plastid DNA fragments were identified. Lastly, we predicted 591C-to-U RNA editing sites in the coding regions of mitochondrial PCGs. The mitochondrial genome will lay the foundation for understanding the evolution of Panax species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.126359 | DOI Listing |
J Biol Chem
January 2025
Department of Forensic Medicine of Basic Medical College, Beihua University, Jilin 132013, Jilin Province, China. Electronic address:
Gastric cancer (GC) remains a significant global health challenge, particularly due to the resistance of gastric cancer stem cells (GCSCs) to chemotherapy. This study investigates the role of heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1), a member of the heterogeneous nuclear ribonucleoproteins (hnRNPs), in modulating mitochondrial metabolic reprogramming and contributing to chemoresistance in GCSCs. Through extensive analysis of tumor cancer genome atlas (TCGA) and gene expression omnibus (GEO) datasets, HNRNPA2B1 was identified as a key regulator in GCSCs, correlating with poor prognosis and enhanced resistance to chemoresistance.
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2025
Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, China.
The complete genome sequence of , a goldthread anthracnose pathogen, was sequenced using PacBio Revio and MGI DNBSEQ-T7 PE150. It contains 10 chromosomes, 5 mini chromosomes, a circular mitochondrial chromosome, and 13,129 genes predicted with RNA-Seq data in a 52.13-Mb genome with an of 5.
View Article and Find Full Text PDFWorld J Clin Oncol
January 2025
Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China.
Background: Mitochondrial genes are involved in tumor metabolism in ovarian cancer (OC) and affect immune cell infiltration and treatment responses.
Aim: To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.
Methods: Prognosis, immunotherapy efficacy, and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.
Mitochondrial DNA B Resour
January 2025
Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Mississippi State, Mississippi, USA.
We present a novel mitogenome assembly of the Redlip Shiner, , and assemblies for the Greenhead Shiner, (Cypriniformes: Leuciscidae). Both are charismatic minnows in the taxonomic group and are endemic to the eastern United States. The genome contains 16,711bp and 16,706bp each comprising a total of 13 protein coding genes, 22 tRNAs, two rRNAs, and a control region.
View Article and Find Full Text PDFMitochondrial DNA B Resour
January 2025
Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China.
is a popular ornamental aquatic plant for aquarists, although only six species are found in China. Destruction of the natural habitats of for human activities has led to a decline in its numbers. In this report, we sequenced and annotated the chloroplast genome for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!