The current study analyzed the high heating values (HHVs) of various waste biomass materials intending to the effective management and more sustainable consumption of waste as clean energy source. Various biomass waste samples including date leaves, date branches, coconut leaves, grass, cooked macaroni, salad, fruit and vegetable peels, vegetable scraps, cooked food waste, paper waste, tea waste, and cardboard were characterized for proximate analysis. The results revealed that all the waste biomass were rich in organic matter (OM). The total OM for all waste biomass ranged from 79.39% to 98.17%. Likewise, the results showed that all the waste biomass resulted in lower ash content and high fixed carbon content associated with high fuel quality. Based on proximate analysis, various empirical equations (HHV=28.296-0.2887(A)-656.2/VM, HHV=18.297-0.4128(A)+35.8/FC and HHV=22.3418-0.1136(FC)-0.3983(A)) have been tested to predict HHVs. It was observed that the heterogeneous nature of various biomass waste considerably affects the HHVs and hence has different fuel characteristics. Similarly, the HHVs of waste biomass were also determined experimentally using the bomb calorimeter, and it was observed that among all the selected waste biomass, the highest HHVs (21.19 MJ kg) resulted in cooked food waste followed by cooked macaroni (20.25 MJ kg). The comparison revealed that experimental HHVs for the selected waste biomass were slightly deviated from the predicted HHVs. Based on HHVs, various thermochemical and biochemical technologies were critically overviewed to assess the suitability of waste biomass to energy products. It has been emphasized that valorizing waste-to-energy technologies provides the dual benefits of sustainable management and production of cleaner energy to reduce fossil fuels dependency. However, the key bottleneck in commercializing waste-to-energy systems requires proper waste collection, sorting, and continuous feedstock supply. Moreover, related stakeholders should be involved in designing and executing the decision-making process to facilitate the global recognition of waste biorefinery concept.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.116943 | DOI Listing |
Environ Res
January 2025
Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil. Electronic address:
This study provides comprehensive overview of the current level, sources and human exposure risk to hazardous polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in South American outdoor air. Research documents were obtainable for only 6 countries within the target period (2014 - 2024). For all contaminants, urban concentrations exceeded that of rural/remote locations.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
The present study evaluates for the first time the seasonal performance of an innovative green groundwater treatment. The pilot plant combines microalgae-bacteria treatment and a cork-wood biofilter to reduce nitrates, pesticides, antibiotics (ABs), and antibiotic resistance genes (ARGs) from groundwater. Groundwater had nitrate concentrations ranging from 220 to 410 mg/L, while ABs (sulfonamides and fluoroquinolones) and pesticides (triazines) were detected at concentrations ranging from a few ng/L to 150 ng/L.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28 a, 10000 Zagreb, Croatia.
This research follows the principles of circular economy through the zero waste concept and cascade approach performed in two steps. Our paper focuses on the first step and explores the characteristics of developed biocomposite materials made from a biodegradable poly(lactic acid) polymer (PLA) reinforced with natural fibers isolated from the second generation of biomass (agricultural biomass and weeds). Two plants, L.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Biomass and Oil Palm Research Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand.
In this comprehensive investigation, the sustainable production and utilization of gas separation membranes derived from coconut water (CW) waste was investigated. The research focuses on the synthesis of bacterial cellulose (BC) and cellulose acetate (CA) membranes from CW, followed by a thorough analysis of their characteristics, including morphology, ATR-FTIR spectroscopy, tensile strength, and chemical composition. The study rigorously evaluates membrane performance, with particular emphasis on CO/CH selectivity under various operational conditions, including pressure, membrane thickness, and number of stages.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
Crude glycerol (CG), a major biodiesel production by-product, is the focus of ongoing research to convert it into polyhydroxyalkanoate (PHA). However, few bacterial strains are capable of efficiently achieving this conversion. Here, 10 PHA-producing strains were isolated from various media.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!