Zoonotic potential and antimicrobial resistance of Escherichia spp. in urban crows in Japan-first detection of E. marmotae and E. ruysiae.

Comp Immunol Microbiol Infect Dis

Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan. Electronic address:

Published: September 2023

Little is known about the prevalence of antimicrobial-resistant bacteria and pathogenic Escherichia coli in crows (carrion and jungle crows). We studied the phylogeny, virulence and antimicrobial resistance gene profiles of crow E. coli isolates to investigate their zoonotic potential and molecular epidemiology. During the winter of 2021-2022, 34 putative E. coli isolates were recovered from 27 of the 65 fresh fecal samples collected in urban areas. Three strains of the B1-O88:H8-ST446-fimH54 lineage, classified as extraintestinal pathogenic E. coli (ExPEC) and necrotoxigenic E. coli type 2, were colistin-resistant and harbored mcr-1.1-carrying IncI2 plasmids. The bla was identified in a multidrug-resistant B1-O non-typeable:H23-ST224-fimH39 strain. In phylogroup B2, two lineages of O6:H1-ST73-fimH30 and O6:H5-ST83-fimH21 were classified as ExPEC, uropathogenic E. coli, and necrotoxigenic E. coli type 1 (O6:H5-ST83-fimH21), and contained several virulence genes associated with avian pathogenic E. coli. Noteworthy is that three isolates, identified as E. coli by MALDI-TOF MS, were confirmed to be two Escherichia marmotae (cryptic clade V) and one Escherichia ruysiae (cryptic clade III) based on ANI and dDDH analyses. Our results provide the first evidence of these new species in crows. E. marmotae and E. ruysiae isolates in this study were classified as ExPEC and contained the enteroaggregative E. coli heat-stable toxin 1 gene. In addition, these two E. marmotae isolates displayed a close genetic relationship with human isolates associated with septicemia. This study provides the first insights into the prevalence and zoonotic significance of Escherichia spp. in urban crows in Japan, posing a significant risk for their transmission to humans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cimid.2023.102040DOI Listing

Publication Analysis

Top Keywords

coli
10
zoonotic potential
8
antimicrobial resistance
8
escherichia spp
8
spp urban
8
urban crows
8
marmotae ruysiae
8
coli isolates
8
pathogenic coli
8
necrotoxigenic coli
8

Similar Publications

Bermuda grass (Cynodon dactylon) is a tropical grass found in all tropical and subtropical areas. It is widely found in Bangladesh and well known for its antimicrobial properties. Cotton gauze is a woven cloth which is used for wound dressing and wound cushioning.

View Article and Find Full Text PDF

Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.

View Article and Find Full Text PDF

The highly rugged yet navigable regulatory landscape of the bacterial transcription factor TetR.

Nat Commun

December 2024

Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.

Transcription factor binding sites (TFBSs) are important sources of evolutionary innovations. Understanding how evolution navigates the sequence space of such sites can be achieved by mapping TFBS adaptive landscapes. In such a landscape, an individual location corresponds to a TFBS bound by a transcription factor.

View Article and Find Full Text PDF

Most bacteria lack membrane-enclosed organelles and rely on macromolecular scaffolds at different subcellular locations to recruit proteins for specific functions. Here, we demonstrate that the optogenetic CRY2-CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations with varying efficiencies in live Escherichia coli cells, including the nucleoid, the cell pole, the membrane, and the midcell division plane. Such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!