Multiple targets analysis in complex samples is of great importance in medical and health sciences. Limited by independent laborious operational procedures, multiple targets determination remains a challenge. Herein, we report an "OR" logic gate multiplexed photoelectrochemical (PEC) sensor based on "one pot" recombinase polymerase amplification (RPA) strategy. "One pot" RPA triggers exponential growth of multiple DNA in complex samples. Subsequently, the amplification products interact separately with lambda exonuclease (λ exo) or Cas12a-crRNA. Following the multiple targets recognition event, the dual enzyme-mediated cleavage separates the signal labels from the photocathode. The resulting photocurrent change is utilized for logical discrimination and detection. The feasibility of the sensor is verified by analyzing the two typical duplex DNA (high-risk human papillomaviruses (HPV)). Ultralow detection limit (0.088 fg/μL, 0.081 fg/μL) with broad detection range (0.1 fg/μL to 10 ng/μL, 0.1 fg/μL to 1 ng/μL) for HPV16 and HPV18 are obtained. Eliminating instrumentation constraints (light source/potential modulation) and simplifying operation procedures, this work opens an avenue for developing multiplexed sensing devices for clinical diagnosis and disease treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2023.125090DOI Listing

Publication Analysis

Top Keywords

"one pot"
12
multiple targets
12
"or" logic
8
logic gate
8
gate multiplexed
8
multiplexed photoelectrochemical
8
high-risk human
8
human papillomaviruses
8
pot" recombinase
8
recombinase polymerase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!