Production of artificial humic acid from corn straw acid hydrolysis residue with biogas slurry impregnation for fertilizer application.

J Environ Manage

CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Published: November 2023

This study investigated hydrothermal humification of corn straw acid hydrolysis residue with biogas slurry impregnation, aiming at producing water-soluble artificial humic acid fertilizer for fertilizer application and soil remediation. Hydrothermal humification parameters, including potassium hydroxide concentration (1-3 mol/L), retention time (2-6 h), and temperature (140-180 °C), were investigated using water as the liquid phase. The selected hydrothermal humification condition was 1.5 mol/L potassium hydroxide at 180 °C for 4 h. Moreover, biogas slurry impregnation (0-30 days) was evaluated to improve humic acid yield without introducing additional chemicals or energy input. Biogas slurry as the liquid phase increased the humic acid production by 73.24% with 5 days of impregnation compared to the control due to the alkalinity. The humic acid concentration was sufficient for China's national standard of water-soluble humic acid fertilizers in such conditions. The organic components in biogas slurry were involved in artificial humification as a precursor, forming C-N bonds with humic acid. The product with fortified nitrogen-containing functional groups enhanced the nutrient slow-release characteristics and water retention capabilities. The pot experiment further confirmed that artificial humic acid prepared in this study not only promoted the growth of plants but also achieved soil remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.118845DOI Listing

Publication Analysis

Top Keywords

humic acid
32
biogas slurry
20
artificial humic
12
slurry impregnation
12
hydrothermal humification
12
acid
10
humic
8
corn straw
8
straw acid
8
acid hydrolysis
8

Similar Publications

Bidirectional electron transfer biofilms (BETB) could efficiently reduce nitrate without accumulating nitrite, representing a promising biological electrochemical denitrification technology. This study utilized iron phthalocyanine modified carbon felt (FePc-CF) to enrich electroactive bacteria, constructing a long-term stable FePc-BETB. Its nitrate removal rate reached 91%, far exceeding the traditional nitrate-reducing biocathode (45%) and Con-BETB (46%).

View Article and Find Full Text PDF

The scalable development of engineeredcarbonaceous materials for commercialization at industrial scale is a formidable issue. Herein, a scalable and innovative chemical exfoliation approach was introduced to develop interlinkedhierarchical biocharnanosheets (BCNs) framework form agricultural wastes. The developed BCNs exhibited higher surface area (1048.

View Article and Find Full Text PDF

Raman-Polarization-Fluorescence Spectroscopic Lidar for Real-Time Detection of Humic-like Substance Profiles.

Environ Sci Technol

March 2025

Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China.

Humic-like substances (HULIS) widely exist in the atmosphere and may strongly affect human health, environment, and climate. However, there are still no accurate methods for detecting the vertical distribution of HULIS. Here, a Raman-Polarization-Fluorescence Spectroscopic Lidar (RPFSL) was developed to simultaneously measure 64-channel broad fluorescence spectra (370-710 nm) of atmospheric aerosols at an excitation wavelength of 355 nm.

View Article and Find Full Text PDF

Humic acid-bound Pb (HA-Pb), as one of the representative solid-associated Pb species, plays important roles in Pb mobility and toxicity in aqueous environments. Stable Pb-phosphate minerals formation mediated by phosphate solubilizing bacteria (PSB) is a promising approach to immobilizing Pb in contaminated waters. However, the underlying processes and kinetics of Pb-phosphate biomineralization from labile HA-Pb species remain unclear.

View Article and Find Full Text PDF

Changing the form of the electric field in the electric field-assisted aerobic composting (EAC) system from direct current to alternating current is confirmed as a potential strategy to enhance compost humification to the level of hyperthermophilic composting. This study pioneered the comparative evaluation of the effects of different electric field forms on the immobilization and phytotoxicity of heavy metals during composting. The results demonstrated that the humic acid content and humification index of alternating electric field-assisted aerobic composting (AEFAC) were approximately 22.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!