Pneumatic cells toward absolute Gaussian morphing.

Science

Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France.

Published: August 2023

On a flat map of the Earth, continents are inevitably distorted. Reciprocally, curving a plate simultaneously in two directions requires a modification of in-plane distances, as Gauss stated in his seminal theorem. Although emerging architectured materials with programmed in-plane distortions are capable of such shape morphing, an additional control of local bending is required to precisely set the final shape of the resulting three-dimensional surface. Inspired by bulliform cells in leaves of monocotyledon plants, we show how the internal structure of flat panels can be designed to program bending and in-plane distortions simultaneously when pressurized, leading to a targeted shell shape. These surfaces with controlled stiffness and fast actuation are manufactured using consumer-grade materials and open a route to large-scale shape-morphing robotics applications.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.adi2997DOI Listing

Publication Analysis

Top Keywords

in-plane distortions
8
pneumatic cells
4
cells absolute
4
absolute gaussian
4
gaussian morphing
4
morphing flat
4
flat map
4
map earth
4
earth continents
4
continents inevitably
4

Similar Publications

Frequency-domain thermoreflectance with beam offset without the spot distortion for accurate thermal conductivity measurement of anisotropic materials.

Rev Sci Instrum

January 2025

Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura C3, Nishikyo-ku, Kyoto 615-8540, Japan.

The measurement of thermal conductivities of anisotropic materials and atomically thin films is pivotal for the thermal design of next-generation electronic devices. Frequency-domain thermoreflectance (FDTR) is a pump-probe technique that is known for its accurate and straightforward approach to determining thermal conductivity and stands out as one of the most effective methodologies. Existing research has focused on advancing a measurement system that incorporates beam-offset FDTR.

View Article and Find Full Text PDF

Electrostriction is the upsurge of strain under an electric field in any dielectric material. Oxygen-defective metal oxides, such as acceptor-doped ceria, exhibit high electrostriction 10 mV values, which can be further enhanced via interface engineering at the nanoscale. This effect in ceria is "non-classical" as it arises from an intricate relation between defect-induced polarisation and local elastic distortion in the lattice.

View Article and Find Full Text PDF

A systematic study of the impact of film thickness on the properties of thin Bi films is presented. To this end, epitaxial films of high quality have been grown on a Si (111) substrate with thicknesses ranging from 1.9 to 29.

View Article and Find Full Text PDF

Oxide superlattices reveal a rich array of emergent properties derived from the composition modulation and the resulting lattice distortion, charge transfer, and symmetry reduction that occur at the interfaces between the layers. The great majority of studies have focused on perovskite oxide superlattices, revealing, for example, the appearance of an interfacial 2D electron gas, magnetic moment, or improper ferroelectric polarization that is not present in the parent phases. Garnets possess greater structural complexity than perovskites: the cubic garnet unit cell contains 160 atoms with the cations distributed between three different coordination sites, and garnets exhibit a wide range of useful properties, including ferrimagnetism and ion transport.

View Article and Find Full Text PDF

With the emergence of electromechanical devices, considerable efforts have been devoted to improving the piezoelectricity of 2D materials. Herein, an anion-doping approach is proposed as an effective way to enhance the piezoelectricity of α-InSe nanosheets, which has a rare asymmetric structure in both the in-plane and out-of-plane directions. As the O plasma treatment gradually substitutes selenium with oxygen, it changes the crystal structure, creating a larger lattice distortion and, thus, an extended dipole moment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!