A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Is scientific evidence enough? Using expert opinion to fill gaps in data in antimicrobial resistance research. | LitMetric

AI Article Synopsis

  • - Antimicrobial Resistance (AMR) is a significant global issue affecting health and economics, with a lack of quantitative data hampering effective modeling of its drivers.
  • - This study utilized expert opinions from workshops conducted in Sweden to gather semi-quantitative data, thereby helping to outline the factors influencing AMR development and transmission in Europe.
  • - Analyzing these expert statements revealed key insights into AMR dynamics, highlighting the importance of expert knowledge where numerical data is insufficient for understanding trends and relationships in AMR.

Article Abstract

Background: Antimicrobial Resistance (AMR) is a global problem with large health and economic consequences. Current gaps in quantitative data are a major limitation for creating models intended to simulate the drivers of AMR. As an intermediate step, expert knowledge and opinion could be utilized to fill gaps in knowledge for areas of the system where quantitative data does not yet exist or are hard to quantify. Therefore, the objective of this study was to identify quantifiable data about the current state of the factors that drive AMR and the strengths and directions of relationships between the factors from statements made by a group of experts from the One Health system that drives AMR development and transmission in a European context.

Methods: This study builds upon previous work that developed a causal loop diagram of AMR using input from two workshops conducted in 2019 in Sweden with experts within the European food system context. A secondary analysis of the workshop transcripts was conducted to identify semi-quantitative data to parameterize drivers in a model of AMR.

Main Findings: Participants spoke about AMR by combining their personal experiences with professional expertise within their fields. The analysis of participants' statements provided semi-quantitative data that can help inform a future of AMR emergence and transmission based on a causal loop diagram of AMR in a Swedish One Health system context.

Conclusion: Using transcripts of a workshop including participants with diverse expertise across the system that drives AMR, we gained invaluable insight into the past, current, and potential future states of the major drivers of AMR, particularly where quantitative data are lacking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449168PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290464PLOS

Publication Analysis

Top Keywords

quantitative data
12
amr
10
fill gaps
8
antimicrobial resistance
8
drivers amr
8
health system
8
system drives
8
drives amr
8
causal loop
8
loop diagram
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!