Homologous recombination deficiency (HRD) is a well-recognized important biomarker in determining the clinical benefits of platinum-based chemotherapy and PARP inhibitor therapy for patients diagnosed with gynecologic cancers. Accurate prediction of HRD phenotype remains challenging. Here, we proposed a novel Multi-Omics integrative Deep-learning framework named MODeepHRD for detecting HRD-positive phenotype. MODeepHRD utilizes a convolutional attention autoencoder that effectively leverages omics-specific and cross-omics complementary knowledge learning. We trained MODeepHRD on 351 ovarian cancer (OV) patients using transcriptomic, DNA methylation and mutation data, and validated it in 2133 OV samples of 22 datasets. The predicted HRD-positive tumors were significantly associated with improved survival (HR = 0.68; 95% CI, 0.60-0.77; log-rank p < 0.001 for meta-cohort; HR = 0.5; 95% CI, 0.29-0.86; log-rank p = 0.01 for ICGC-OV cohort) and higher response to platinum-based chemotherapy compared to predicted HRD-negative tumors. The translational potential of MODeepHRDs was further validated in multicenter breast and endometrial cancer cohorts. Furthermore, MODeepHRD outperforms conventional machine-learning methods and other similar task approaches. In conclusion, our study demonstrates the promising value of deep learning as a solution for HRD testing in the clinical setting. MODeepHRD holds potential clinical applicability in guiding patient risk stratification and therapeutic decisions, providing valuable insights for precision oncology and personalized treatment strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2023.3308440DOI Listing

Publication Analysis

Top Keywords

homologous recombination
8
risk stratification
8
therapeutic decisions
8
modeephrd
5
multi-omics deep-learning
4
deep-learning prediction
4
prediction homologous
4
recombination deficiency-like
4
deficiency-like phenotype
4
phenotype improved
4

Similar Publications

BRCA1 deficiency is observed in approximately 25% of triple-negative breast cancer (TNBC). BRCA1, a key player of homologous recombination (HR) repair, is also involved in stalled DNA replication fork protection and repair. Here, we investigated the sensitivity of BRCA1-deficient TNBC models to the frequently used replication chain terminator gemcitabine, which does not directly induce DNA breaks.

View Article and Find Full Text PDF

Comprehensive evaluation of genomic and functional assays for homologous recombination deficiency with high-grade epithelial ovarian cancer: Platinum sensitivity and prognosis.

Int J Gynecol Cancer

January 2025

Fudan University Shanghai Cancer Center, Department of Gynecologic Oncology, Shanghai, China; Fudan University, Shanghai Medical College, Department of Oncology, Shanghai, China. Electronic address:

Objective: Homologous recombination deficiency assays, guiding treatment of poly (adenosine diphosphate ribose) polymerase inhibitors, are increasingly applied in clinics. This study aimed to evaluate the predictive performance of homologous recombination deficiency status at genomic and functional perspective on the efficacy of platinum-based chemotherapy in ovarian cancer.

Methods: Between 2016 and 2019, 134 patients with high-grade ovarian cancer were retrospectively analyzed.

View Article and Find Full Text PDF

Background: We present a systematic review and meta-analysis of randomized clinical trials (RCTs) with PARPi either as monotherapy or in combination with an androgen receptor-targeted agent (ARTA) in first- and second-line settings.

Methods: Primary endpoints are radiographic progression free survival (rPFS) and overall survival (OS) in patients with mCRPC and either unselected, homologous recombination repair wild-type (HRR-), homologous recombination repair mutated (HRR+) or with BRCA1, BRCA2, or ATM mutation. The effect of PARPi + ARTA in the second-line setting is also explored.

View Article and Find Full Text PDF

Resistance to radiotherapy remains a critical barrier in treating colorectal cancer (CRC), particularly in cases of locally advanced rectal cancer (LARC). To identify key kinases involved in CRC radioresistance, we employed a kinase-targeted CRISPR-Cas9 library screen. This approach aimed to identify potential kinase inhibitors as radiosensitizers.

View Article and Find Full Text PDF

Transcription near arrested DNA replication forks triggers ribosomal DNA copy number changes.

Nucleic Acids Res

January 2025

Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan.

DNA copy number changes via chromosomal rearrangements or the production of extrachromosomal circular DNA. Here, we demonstrate that the histone deacetylase Sir2 maintains the copy number of budding yeast ribosomal RNA gene [ribosomal DNA (rDNA)] by suppressing end resection of DNA double-strand breaks (DSBs) formed upon DNA replication fork arrest in the rDNA and their subsequent homologous recombination (HR)-mediated rDNA copy number changes during DSB repair. Sir2 represses transcription from the regulatory promoter E-pro located near the fork arresting site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!