To resourcefully utilize algal biomass and effectively remove bisphenol A (BPA) from water, sodium alginate (SA) was prepared as the nitrogen-doped magnetic porous carbon material (SAC/N/Fe) with well-developed pore structure according to a one-step method using KCO, melamine, Fe(NO)·9HO as the activator, nitrogen dopant, and magnetic precursor, respectively, in this study. The best product, SAC/N/Fe-0.2, was obtained by adjusting the mass ratio of raw materials, and its specific surface area and pore volume were 2240.65 m g and 1.44 cm g, respectively, with a maximum adsorption capacity of 1248.23 mg g for BPA at 308 K. SEM, XRD, XPS, VSM, and FT-IR characterization confirmed that the iron was successfully doped, giving the porous carbon a magnetic separation function. The adsorption process of BPA was more consistent with the Langmuir model and the proposed secondary kinetics, and the adsorption effect was stable and efficient in a wide pH range and under the interference of different metal ions. At the same time, the porous carbon was easy to separate and recover with good regeneration performance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-29346-3DOI Listing

Publication Analysis

Top Keywords

porous carbon
16
one-step preparation
4
magnetic
4
preparation magnetic
4
magnetic n-doped
4
n-doped sodium
4
sodium alginate-based
4
porous
4
alginate-based porous
4
carbon
4

Similar Publications

Lead (Pb) is a highly toxic heavy metal that causes significant health hazards and environmental damage. Thus, the detection and removal of Pb ions in freshwater sources are imperative for safeguarding public health and the environment. Moreover, the transformation of single resources into multiple high-value products is vital for achieving sustainable development goals (SDGs).

View Article and Find Full Text PDF

The NiCoO Nanosheets@Carbon fibers composites have been successfully synthesized by a facile co-electrodeposition process. The mesoporous NiCoO nanosheets aligned vertically on the surface of carbon fibers and crosslinked with each other, producing loosely porous nanostructures. These hybrid composite electrodes exhibit high specific capacitance in a three-electrode cell.

View Article and Find Full Text PDF

MOF-derived Carbon-Based Materials for Energy-Related Applications.

Adv Mater

January 2025

State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.

New carbon-based materials (CMs) are recommended as attractively active materials due to their diverse nanostructures and unique electron transport pathways, demonstrating great potential for highly efficient energy storage applications, electrocatalysis, and beyond. Among these newly reported CMs, metal-organic framework (MOF)-derived CMs have achieved impressive development momentum based on their high specific surface areas, tunable porosity, and flexible structural-functional integration. However, obstacles regarding the integrity of porous structures, the complexity of preparation processes, and the precise control of active components hinder the regulation of precise interface engineering in CMs.

View Article and Find Full Text PDF

Control of Permanent Porosity in Type 3 Porous Liquids via Solvent Clustering.

ACS Appl Mater Interfaces

January 2025

Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States.

Porous liquids (PLs) are an exciting new class of materials for carbon capture due to their high gas adsorption capacity and ease of industrial implementation. They are composed of sorbent particles suspended in a nonadsorbed solvent, forming a liquid with permanent porosity. While PLs have a vast number of potential compositions based on the number of solvents and sorbent materials available, most of the research has been focused on the selection of the sorbent rather than the solvent.

View Article and Find Full Text PDF

Water splitting by an electrochemical method to generate hydrogen gas is an economic and green approach to resolve the looming energy and environmental crisis. Designing a composite electrocatalyst having integrated multichannel charge separation, robust stability, and low-cost facile scalability could be considered to address the issue of electrochemical hydrogen evolution. Herein, we report a superhydrophilic, noble-metal-free bimetallic nanostructure TiO/NiP coated on graphitic polyacrylonitrile carbon fibers (g-C/TiO/NiP) using a facile hydrothermal method followed by phosphorylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!