How emotion and cognition interact is still a matter of debate. Investigation of this interaction in terms of the brain oscillatory dynamics appears to be an essential approach. To investigate this topic, we designed two separate three-stimulus oddball tasks, including emotional stimuli with different valences. Twenty healthy young subjects were included in the study. They completed two tasks, namely: the positive emotional oddball task and the negative emotional oddball task. Each task included the target, non-target, and distractor stimuli. Positive and negative pictures were the target stimuli in the positive and negative emotional oddball task. We asked participants to determine the number of target stimuli in each task. During sessions, EEGs were recorded with 32 electrodes. We found that (negative) target stimuli elicit higher delta (1-3.5 Hz) and theta (4-7 Hz) power responses but not the phase-locking responses compared to (positive) distractor stimuli during the negative oddball task. On the other hand, the same effect was not seen during the positive emotional oddball task. Here, we showed that the valence dimension interacted with the target status. Finally, we summarized our results that the presence of negative distractors attenuated the target effect of the positive stimuli due to the negative bias.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10339-023-01158-w | DOI Listing |
Int J Psychophysiol
January 2025
Department of Applied Psychology, College of Public Administration, Guangdong University of Foreign Studies, Guangzhou, China. Electronic address:
Investigating the neurophysiological indicators of behavioral inhibition is crucial; however, despite numerous studies on the relationship between behavioral inhibition and resting-state electroencephalography (rs-EEG), the findings have yielded inconsistent results. Furthermore, these investigations primarily focused on reactive inhibition while neglecting intentional inhibition. Therefore, this study aimed to reassess the correlation between reactive inhibition and rs-EEG metrics while also exploring the association between intentional inhibition and rs-EEG.
View Article and Find Full Text PDFFront Hum Neurosci
January 2025
Center for Tactile Internet With Human-in-the-Loop, Technical University of Dresden, Dresden, Germany.
Introduction: The detection of, and adaptation to delayed visual movement feedback has been extensively studied. One important open question is whether the Weber-Fechner Laws hold in the domain of visuomotor delay; i.e.
View Article and Find Full Text PDFUnlabelled: Predictive coding (PC) hypothesizes that the brain computes internal models of predicted events and that unpredicted stimuli are signaled with prediction errors that feed forward. We tested this hypothesis using a visual oddball task. A repetitive sequence interrupted by a novel stimulus is a "local" oddball.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138.
The hippocampus possesses anatomical differences along its long axis. Here, we explored the functional specialization of the human hippocampal long axis using network-anchored precision functional MRI in two independent datasets (N = 11 and N = 9) paired with behavioral analysis (N = 266 and N = 238). Functional connectivity analyses demonstrated that the anterior hippocampus was preferentially correlated with a cerebral network associated with remembering, while the posterior hippocampus selectively contained a region correlated with a distinct network associated with behavioral salience.
View Article and Find Full Text PDFPsychon Bull Rev
January 2025
Department of Psychology, McGill University, 2001 Av. McGill College, Montréal, QC, H3A 1G1, Canada.
A growing body of evidence across psychology suggests that (cognitive) effort exertion increases in proximity to a goal state. For instance, previous work has shown that participants respond more quickly, but not less accurately, when they near a goal-as indicated by a filling progress bar. Yet it remains unclear when over the course of a cognitively demanding task do people monitor progress information: Do they continuously monitor their goal progress over the course of a task, or attend more frequently to it as they near their goal? To answer this question, we used eye-tracking to examine trial-by-trial changes in progress monitoring as participants completed blocks of an attentionally demanding oddball task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!