Epstein-Barr virus (EBV) DNA may influence the development of autoimmune diseases by increasing the production of proinflammatory cytokines. Such cytokines have been associated with inducing the dysbiosis of colonic microbiota, which, in turn, is a risk factor for autoimmune diseases such as rheumatoid arthritis (RA). Therefore, we investigated the role that EBV DNA may play in modulating the intestinal microbiota and consequent exacerbation of arthritis in a mouse model. Mice were treated with collagen (arthritis-inducing agent), EBV DNA and collagen, EBV DNA, or water. Fecal samples were collected from arthritic and control mice, and 16S rRNA sequencing was performed to determine the effect of EBV DNA on the composition of colonic microbiota. EBV DNA causes a change in the alpha diversity of the microbiota resulting in an increased Chao1 microbial richness and decreased Shannon diversity index in the RA mouse model. In addition, the abundance of particular genera/genus clusters was significantly altered among the various groups, with the EBV DNA-exacerbated arthritic group having the highest number of altered genera/genus cluster abundances. This group also had the highest number of cells co-expressing IL-17A, FOXP3, and IFNγ in the colons. Antimicrobial-cleared mice transplanted with fecal samples from EBV DNA-exacerbated arthritic mice showed a higher incidence and enhanced severity of RA compared to those transplanted with fecal samples from water or collagen-treated mice. IMPORTANCE Epstein-Barr virus (EBV) DNA alters the composition and diversity of the gut microbiota in a rheumatoid arthritis (RA) mouse model. These induced changes are associated with enhanced severity of symptoms. This better understanding of the various factors involved in the development of RA will possibly help in creating individualized treatments for RA patients including target mediators triggered by viral DNA. Given that a large swathe of the population harbors EBV, a significant proportion of subjects with arthritis may benefit from possible approaches that target EBV or mediators triggered by this virus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581075 | PMC |
http://dx.doi.org/10.1128/spectrum.02042-23 | DOI Listing |
J Transl Med
January 2025
Department of Academic Research, The Second Hospital of Shandong University, Jinan, Shandong, China.
Background: To elucidate the genetic and molecular mechanisms underlying psoriasis by employing an integrative multi-omics approach, using summary-data-based Mendelian randomization (SMR) to infer causal relationships among DNA methylation, gene expression, and protein levels in relation to psoriasis risk.
Methods: We conducted SMR analyses integrating genome-wide association study (GWAS) summary statistics with methylation quantitative trait loci (mQTL), expression quantitative trait loci (eQTL), and protein quantitative trait loci (pQTL) data. Publicly available datasets were utilized, including psoriasis GWAS data from the European Molecular Biology Laboratory-European Bioinformatics Institute and the UK Biobank.
Nat Commun
January 2025
Dept. of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
Gammaherpesviruses are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus and murine gammaherpesvirus 68, this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
Background: The prospective application of plasma Epstein-Barr virus (EBV) DNA load as a noninvasive measure of intestinal EBV infection remains unexplored. This study aims to identify ideal threshold levels for plasma EBV DNA loads in the diagnosis and outcome prediction of intestinal EBV infection, particularly in cases of primary intestinal lymphoproliferative diseases and inflammatory bowel disease (IBD).
Methods: Receiver operating characteristic (ROC) curves were examined to determine suitable thresholds for plasma EBV DNA load in diagnosing intestinal EBV infection and predicting its prognosis.
Front Microbiol
January 2025
Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
Oncogenic gamma herpesviruses, including Epstein-Barr Virus (EBV) and Kaposi's Sarcoma-associated Herpesvirus (KSHV), are opportunistic cancer-causing viruses and induces oncogenesis through complex mechanisms, which involves manipulation of cellular physiology as well as epigenetic and epitranscriptomic reprogramming. In this review, we describe the intricate processes by which these viruses interact with the epigenetic machinery, leading to alterations in DNA methylation, histone modifications, and the involvement of non-coding RNAs. The key viral proteins such as EBNA1 and LMP1 encoded by EBV; LANA and vGPCR encoded by KSHV; play pivotal roles in these modifications by interacting with host factors, and dysregulating signaling pathways.
View Article and Find Full Text PDFNucl Med Commun
January 2025
Department of Nuclear Medicine, Fudan University Shanghai Cancer Center.
Objective: The objective of this study is to evaluate and compare the clinical utility of 18F-fluoro-2-deoxy-d-glucose PET and computed tomography (18F-FDG PET/CT) in detecting recurrence and metastasis in patients with nasopharyngeal carcinoma (NPC) who exhibit elevated levels of Epstein-Barr virus (EBV) DNA following treatment.
Methods: A total of 103 patients with NPC were studied retrospectively. All patients were in remission following initial treatment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!