Background: Idiopathic epilepsy in cats is a more common disease than previously thought, but little information is available about the medical treatment of feline idiopathic epilepsy.
Aim: To assess the therapeutic efficacy and safety of antiseizure medication (ASM) for a minimum of 6 months, including zonisamide (ZNS), in feline idiopathic epilepsy at a referral hospital in Japan.
Methods: Twenty cats diagnosed with idiopathic epilepsy treated with ASMs were retrospectively included.
Results: Nine cats that were finally treated with phenobarbital (PB) monotherapy reached the primary goal (the seizure frequency after the treatment intervention was less than one seizure every 3 months). Three cats were treated with ZNS monotherapy and two reached the primary goal. Eight cats finally received combination therapy. Two of the three cats receiving PB and ZNS therapy achieved the primary goal, but one was considered no responder. Five cats [PB + diazepam (DZP), ZNS + DZP, and ZNS + levetiracetam + DZP] decreased the seizure frequency and reached the primary goal in all but one cat reached the secondary goal. Adverse events were observed in eight patients, but these were curable. Two patients had vomiting after ZNS monotherapy, one had diarrhea, and another was an increase in sleeping hours.
Conclusion: PB was frequently used and seemed effective as both monotherapy and combination therapy. Some cats were treated with ASM protocols containing ZNS. ZNS may be available to treat idiopathic epilepsy in cats. However, ZNS administration may cause adverse events, such as gastrointestinal toxicity, in cats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443824 | PMC |
http://dx.doi.org/10.5455/OVJ.2023.v13.i7.6 | DOI Listing |
BMC Neurol
January 2025
Department of Neurology, Dow University Hospital, Dow University of health sciences, Karachi, Pakistan.
Background: Oxidative damage has been implicated in multiple neurodegenerative diseases, including epilepsy. Selenium, in the form of selenoproteins is an integral part of the human antioxidant defense system. Though a relationship between the altered selenium levels and epilepsy has been reported, limited evidence is available about the expression pattern of selenoproteins in epileptic patients.
View Article and Find Full Text PDFAm J Med Genet B Neuropsychiatr Genet
January 2025
Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
The RYR3 gene encodes a brain-type ryanodine receptor that functions to release calcium from intracellular storage and plays an essential role in calcium signaling. The associations between RYR3 variants and brain disorders remain unknown. We performed whole-exome sequencing in patients with idiopathic (non-lesional) partial epilepsy of unknown etiology.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
Idiopathic epilepsy (IE) is the most common neurological disease in dogs. Approximately 1/3 of dogs with IE are resistant to anti-seizure medications (ASMs). Because the diagnosis of IE is largely based on the exclusion of other diseases, it would be beneficial to indicate an IE biomarker to better understand, diagnose, and treat this disease.
View Article and Find Full Text PDFIndian J Clin Biochem
January 2025
Multi-disciplinary Research Unit, Maulana Azad Medical College, New Delhi, India.
Single Nucleotide Polymorphisms (SNPs) have found it be associated with drug resistance in epilepsy. The purpose of this study was to determine the role of SCN1A gene polymorphism in developing drug resistance in idiopathic generalized epilepsy (IGE) patients, along with increased oxidative stress. The study was conducted at a tertiary care hospital in Delhi, India.
View Article and Find Full Text PDFJ Vet Intern Med
January 2025
Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina, USA.
Background: Post-ictal (PI) clinical signs are a key defining stage of seizure manifestation in dogs. However, this phase remains poorly understood.
Objectives: To further characterize PI signs and their relation to other parts of a seizure, and understand the owner's perception of how PI signs affect the quality of life (QOL) of the dog.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!