Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2885.1986.tb00052.xDOI Listing

Publication Analysis

Top Keywords

superiority power
4
power function
4
function exponential
4
exponential functions
4
functions prediction
4
prediction renal
4
renal gentamicin
4
gentamicin residues
4
residues sheep
4
superiority
1

Similar Publications

The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.

View Article and Find Full Text PDF

Rhodanine Substitution of Asymmetric Nonfullerene Acceptors for High-Performance Organic Solar Cells.

ACS Appl Mater Interfaces

January 2025

College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.

Asymmetric substitution is acknowledged as a straightforward yet potent approach for the optimization of small molecule acceptors (SMAs), thereby enhancing the power conversion efficiency (PCE) of organic solar cells (OSCs). In this work, we have successfully engineered and synthesized a novel asymmetric SMA, designated as Y6-R, which features a rhodanine-terminated inner side-chain. In devices with PM6 as the polymer donor, the asymmetric Y6-R demonstrated an impressive PCE of 18.

View Article and Find Full Text PDF

Solar energy sources have garnered significant attention as a renewable energy option. Despite this, the practical power conversion efficiency (PCE) of widely used silicon-based solar cells remains low due to inefficient light utilization. In this study, carbon dots (APCDs) were prepared a hydrothermal method using ammonium polyphosphate and -phenylenediamine, then incorporated into a silicone-acrylic emulsion (CAS) to create a luminescent down-shifting (LDS) layer for solar cells.

View Article and Find Full Text PDF

This paper addresses the thermal instability of lasers resulting from the thermal effects of the 2 µm gain medium, proposing what we believe to be a novel compensation scheme that integrates machine learning technology with multi-segment bonded Tm: YAG crystals and negative lenses, based on the thermal focal length model of a thick thermal lens. This approach significantly optimizes thermal compensation and facilitates rapid assessment of the light-emitting behavior trends of Tm: YAG lasers. Firstly, the thermal behavior of conventional and multi-segment bonded Tm: YAG crystals is analyzed.

View Article and Find Full Text PDF

We present a novel and efficient methodology for obtaining high-gain on-chip few-mode erbium-doped waveguide amplifiers, which exhibit a moderate differential mode gain (DMG). The efficiency of the device is validated by an optimized algorithm that theoretically models the gain performance of the six lowest-order optical modes, namely TE, TM, TE, TM, TE, and TM. Notably, these six signal modes achieve internal net gains exceeding 22 dB within a 5-cm-long waveguide, while maintaining the DMG at a mere 2 dB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!