Decavanadate ([V O ] , {V }) clusters are a potential electrode material for lithium and post-lithium batteries; however, their low stability due to the solubility in liquid organic electrolytes has been challenging. These molecular clusters are also prone to transform into solid-state oxides at a moderate temperature needed in the typical electrode fabrication process. Hence, controlling the solubility and improving the thermal stability of compounds are essential to make them more viable options for use as battery electrodes. This study shows a crystal engineering approach to stabilize the cluster with organic guanidinium (Gdm ) cation through the hydrogen-bonding interactions between the amino groups of the cation and the anion. The comparison of solubility and thermal stability of the Gdm{V } with another cluster bearing tetrabutylammonium (Tba ) cation reveals the better stability of cation-anion assembly in the former than the latter. As a result, the Gdm{V } delivers better rate capability and cycling stability than Tba{V } when tested as anode material in a half-cell configuration of a sodium-ion battery. Finally, the performance of the Gdm{V } anode is also investigated in a lithium-ion battery full cell with LiFePO cathode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202300631 | DOI Listing |
Brain Spine
December 2024
Department of Neurosurgery, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany.
Introduction: Breathing-synchronized hypoglossal-nerve stimulation is a treatment option for suitable patients with severe obstructive-sleep-apnoea. The classical implantation technique requires three incisions: submental to place the stimulating-electrode on terminal branches of the hypoglossal-nerve, sub-clavicular to place the impulse generator, and on the lateral chest-wall to place a breathing-sensor lead. A two-incision-technique has been propagated and widely adopted whereby the respiratory-sensing-lead is placed deeper to the IPG-pocket.
View Article and Find Full Text PDFGreen Chem
January 2025
Advanced Materials Research Group, Faculty of Engineering, University of Nottingham Nottingham NG7 2RD UK.
Development of sustainable synthesis methods of organic electrode materials (OEMs) for sodium (Na)-ion batteries must take hold rapidly in large scale-synthesis if subsequent commercialisation is to occur. We report a facile and rapid gram-scale synthesis method based on microwave irradiation for disodium naphthalene-2,6-dicarboxylate (Na-NDC) and mono/disodium benzene-1,4-dicarboxylate (Na-BDC) as model compounds. Phase purity and formation of materials was confirmed by various characterisation techniques.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Lithium dendrites are widely acknowledged as the main culprit of the degradation of performance in various Li-based batteries. Studying the mechanism of lithium dendrite formation is challenging because of the high reactivity of lithium metal. In this work, a phase field model and in situ observation experiments were used to study the growth kinetics and morphologies of lithium dendrites in terms of anisotropy, temperature, and potential difference.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India.
The development of devices capable of storing energy harnessed from photons is on the rise, owing to the increasing global energy demand for smart systems. The majority of reports in this field cover the use of integrated type devices, which houses a separate photovoltaic module and supercapacitor or battery. Herein, we are reporting a photocapacitor with a simple two-electrode design, capable of operating without a conventional electrolyte or metal ions.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.
Room-temperature non-aqueous sodium metal batteries are viable candidates for cost-effective and safe electrochemical energy storage. However, they show low specific energy and poor cycle life as the use of conventional organic-based non-aqueous electrolyte solutions enables the formation of interphases that cannot prevent degradations at the positive and negative electrodes. Here, to promote the formation of inorganic NaF-rich interphases on both negative and positive electrodes, we propose the salt-in-presalt (SIPS) electrolyte formulation strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!