The fragmentation mechanism of D-glucose was investigated in detail by two different fragmentation techniques, namely, collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD) using all six C-labeled isotopomers and H-labeled isotopomers. For both CID and IRMPD energy-resolved measurements were carried out. Individual fragmentation pathways were studied at MS and MS levels. Additionally, we have developed an HPLC-tandem MS method to separate the anomers of D-glucose using a HILIC column and investigated their fragmentation patterns individually. We propose a complete fragmentation landscape of D-glucose, demonstrating that a rather simple multifunctional molecule displays extreme complexity in gas phase dissociation, following multiple parallel fragmentation routes yielding a total of 23 distinct fragment ions. The results allowed a detailed formulation of the complex fragmentation mechanism of D-glucose. The results have immediate consequences for the full structure analysis of complex carbohydrates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.4972DOI Listing

Publication Analysis

Top Keywords

fragmentation mechanism
8
mechanism d-glucose
8
fragmentation
7
understanding fragmentation
4
fragmentation glucose
4
glucose mass
4
mass spectrometry
4
spectrometry fragmentation
4
d-glucose
4
d-glucose investigated
4

Similar Publications

Background: Increased reactive oxygen species (ROS) are involved in the pathological process of dry eye disease. Our previous results suggested that norepinephrine (NE) has a protective effect on dry eye.

Purpose: This study explored the potential therapeutic role and underlying mechanisms of NE in benzalkonium chloride (BAC)-induced dry eye disease.

View Article and Find Full Text PDF

Unlabelled: The scientific and practical interest in studying the biomechanical characteristics of the lens capsule, on the one hand, is associated with its anatomical significance in modern microinvasive phaco surgery, and on the other hand, with investigation of the mechanisms of lens curvature changes during accommodation. Selective study of the biomechanical properties of the lens capsule aims to identify characteristics of various regions and surfaces of the capsule.

Purpose: This study is a comparative analysis of age-related changes in the biomechanical properties of the anterior (AC) and posterior (PC) lens capsules in humans.

View Article and Find Full Text PDF

Background: Plant diseases caused by plant pathogens pose a great threat to biodiversity and food security, and the problem of drug resistance caused by traditional antibiotics and fungicides is becoming more and more serious. It is urgent to develop new antibacterial molecules with low toxicity and high efficiency. Marinoquinoline A is an alkaloid isolated from marine actinomycetes and has a variety of pharmacological activities.

View Article and Find Full Text PDF

The characterization of outer membrane vesicles (OMVs) and their role in mediating antibiotic-resistance gene transfer through natural transformation in Riemerella anatipestifer.

Poult Sci

December 2024

Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:

Riemerella anatipestifer (R. anatipestifer, RA) is the etiological agent of duck serositis, an acute multisystemic disease in ducks that is globally distributed and causes serious economic losses in the duck industry. Despite exhibiting multidrug resistance, the transmission mechanism of its antibiotic resistance genes (ARGs) remains incompletely identified.

View Article and Find Full Text PDF

The Unusual Role of Ribonuclease L in Innate Immunity.

Wiley Interdiscip Rev RNA

December 2024

Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.

Ribonuclease L is an endonuclease that is activated as part of the dsRNA-driven innate immune response. Active RNase L cleaves pathogenic RNAs as a way to eliminate infections. However, there are additional and unexpected ways that RNase L causes changes in the host that promote an immune response and contribute to its role in host defense.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!