Download full-text PDF

Source
http://dx.doi.org/10.1038/d41586-023-02604-7DOI Listing

Publication Analysis

Top Keywords

life mars?
4
mars? cave
4
cave earth
4
earth teach
4
life
1
cave
1
earth
1
teach
1

Similar Publications

Viability and Motility of Under Elevated Martian Salt Stresses.

Life (Basel)

November 2024

Astrobiology Group, Center of Astronomy and Astrophysics, Technical University Berlin, 10623 Berlin, Germany.

This study investigates the effects of three Martian-relevant salts-sodium chlorate, sodium perchlorate, and sodium chloride-on the viability and motility of , a model organism for understanding microbial responses to environmental stress. These salts are abundant on Mars and play a crucial role in forming brines, one of the few sources of stable liquid water on the planet. We analyze the survivability under different salt concentrations using colony plating.

View Article and Find Full Text PDF

Mars Sample Return (MSR) has been the highest flagship mission priority in the last two Planetary Decadal Surveys of the National Academies of Science, Engineering, and Medicine (hereafter, "the National Academies") and was the highest priority flagship for Mars in the Decadal Survey that preceded them. This inspirational and challenging campaign, like the Apollo program's returned lunar samples, will potentially revolutionize our understanding of Mars and help inform how other planets are explored. MSR's technological advances will keep the NASA and European Space Agency at the forefront of planetary exploration, and data on returned samples will fill knowledge gaps for future human exploration.

View Article and Find Full Text PDF

Organic matter and biomarkers: Why are samples required?

Proc Natl Acad Sci U S A

January 2025

Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany.

The search for evidence of past prebiotic or biotic activity on Mars will be enhanced by the return of samples to Earth laboratories. While impressive analytical feats have been accomplished by in situ missions on the red planet, accessing the capabilities of Earth's global laboratories will present a step change in data acquisition. Highly diagnostic markers of past life are biomarkers, organic molecules whose architecture can be attributed to once living organisms.

View Article and Find Full Text PDF

The NASA Mars 2020 Perseverance Rover Mission has collected samples of rock, regolith, and atmosphere within the Noachian-aged Jezero Crater, once the site of a delta-lake system with a high potential for habitability and biosignature preservation. Between sols 109 and 1,088 of the mission, 27 sample tubes have been sealed, including witness tubes. Each sealed sample tube has been collected along with detailed documentation provided by the Perseverance instrument payload, preserving geological and environmental context.

View Article and Find Full Text PDF

Fundamental constraints and questions from the study of martian meteorites and the need for returned samples.

Proc Natl Acad Sci U S A

January 2025

School of Geographical and Earth Sciences, Gregory Building, University of Glasgow, Glasgow G12 8QQ, Scotland.

Physical materials from planetary bodies are crucial for understanding fundamental processes that constrain the evolution of the solar system, as samples can be analyzed at high precision and accuracy in Earth-based laboratories. Mars is the only planet outside of Earth from which we possess samples in the form of meteorites. Martian meteorites (n > 350) have enabled constraints to be placed on various aspects of the red planet's formation and evolution, notably: that Mars accreted and differentiated rapidly; that the planet has a complex volatile element evolution; and that it has always been volcanically active with a rich and diverse magmatic history.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!