Owing to the advancement of wireless technologies, there is a strong public perception of increasing exposure to Radiofrequency (RF) electromagnetic fields (EMF). The aim of this study is to determine the evolution of EMF in the environment, and consequently, human exposure to them, over a period of about two decades, spanning from the end of 2003 until February 2022. The study is based on data collected by two non-ionizing radiation monitoring networks in Greece. The networks consist of fixed EMF sensors that register the RMS electric field value every 6 min, on a 24 h basis. We used the Seasonal-Trend decomposition method using (LOESS), known as the STL method to decompose the time series into trend, seasonal, and noise components. Additionally, since the sensors include frequency filters for separating the cellular frequencies, the recorded data were used to identify the exposure contribution by cellular networks in comparison to other EMF sources. The study indicates that RF-EMF do not explicitly decrease or increase but rather fluctuate over time. Similarly, the contribution of mobile cellular networks to the total field change over time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447458PMC
http://dx.doi.org/10.1038/s41598-023-41034-3DOI Listing

Publication Analysis

Top Keywords

cellular networks
8
study
4
study long
4
long term
4
term changes
4
changes electromagnetic
4
electromagnetic environment
4
environment data
4
data continuous
4
continuous monitoring
4

Similar Publications

Background: The morbidity and mortality of sepsis remain high, and so far specific diagnostic and therapeutic means are lacking.

Objective: To screen novel biomarkers for sepsis.

Methods: Raw sepsis data were downloaded from the Chinese National Genebank (CNGBdb) and screened for differentially expressed RNAs.

View Article and Find Full Text PDF

Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded CD8 cytotoxic T lymphocytes with in vitro specificity for patient-matched AML.

View Article and Find Full Text PDF

Genes on the X chromosome are extensively expressed in the human brain. However, little is known for the X chromosome's impact on the brain anatomy, microstructure, and functional networks. We examined 1045 complex brain imaging traits from 38,529 participants in the UK Biobank.

View Article and Find Full Text PDF

Microorganisms tend to accumulate on surfaces, forming aggregates such as biofilms, which grant them resistance to various environmental stressors and antimicrobial agents. This ability has hindered the effective treatment of diseases caused by pathogenic microorganisms, including Salmonella, which is responsible for a significant number of deaths worldwide. This study aimed to compare the metabolic profiles of planktonic and sessile cells of Salmonella Enteritidis using a metabolomics approach.

View Article and Find Full Text PDF

Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!