Electroencephalography (EEG), despite its inherited complexity, is a preferable brain signal for automatic human emotion recognition (ER), which is a challenging machine learning task with emerging applications. In any automatic ER, machine learning (ML) models classify emotions using the extracted features from the EEG signals, and therefore, such feature extraction is a crucial part of ER process. Recently, EEG channel connectivity features have been widely used in ER, where Pearson correlation coefficient (PCC), mutual information (MI), phase-locking value (PLV), and transfer entropy (TE) are well-known methods for connectivity feature map (CFM) construction. CFMs are typically formed in a two-dimensional configuration using the signals from two EEG channels, and such two-dimensional CFMs are usually symmetric and hold redundant information. This study proposes the construction of a more informative CFM that can lead to better ER. Specifically, the proposed innovative technique intelligently combines CFMs' measures of two different individual methods, and its outcomes are more informative as a fused CFM. Such CFM fusion does not incur additional computational costs in training the ML model. In this study, fused CFMs are constructed by combining every pair of methods from PCC, PLV, MI, and TE; and the resulting fused CFMs PCC + PLV, PCC + MI, PCC + TE, PLV + MI, PLV + TE, and MI + TE are used to classify emotion by convolutional neural network. Rigorous experiments on the DEAP benchmark EEG dataset show that the proposed CFMs deliver better ER performances than CFM with a single connectivity method (e.g., PCC). At a glance, PLV + MI-based ER is shown to be the most promising one as it outperforms the other methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447430PMC
http://dx.doi.org/10.1038/s41598-023-40786-2DOI Listing

Publication Analysis

Top Keywords

emotion recognition
8
connectivity feature
8
feature map
8
machine learning
8
fused cfms
8
eeg
5
cfm
5
cfms
5
improved eeg-based
4
eeg-based emotion
4

Similar Publications

Emotion recognition plays a crucial role in brain-computer interfaces (BCI) which helps to identify and classify human emotions as positive, negative, and neutral. Emotion analysis in BCI maintains a substantial perspective in distinct fields such as healthcare, education, gaming, and human-computer interaction. In healthcare, emotion analysis based on electroencephalography (EEG) signals is deployed to provide personalized support for patients with autism or mood disorders.

View Article and Find Full Text PDF

Responsible Design, Integration, and Use of Generative AI in Mental Health.

JMIR Ment Health

January 2025

The Samueli Initiative for Responsible AI in Medicine, Tel Aviv University, Tel Aviv, Israel.

Generative artificial intelligence (GenAI) shows potential for personalized care, psychoeducation, and even crisis prediction in mental health, yet responsible use requires ethical consideration and deliberation and perhaps even governance. This is the first published theme issue focused on responsible GenAI in mental health. It brings together evidence and insights on GenAI's capabilities, such as emotion recognition, therapy-session summarization, and risk assessment, while highlighting the sensitive nature of mental health data and the need for rigorous validation.

View Article and Find Full Text PDF

Background: Cognitive training (CT) has been one of the important non-pharmaceutical interventions that could delay cognitive decline. Currently, no definite CT methods are available. Furthermore, little attention has been paid to the effect of CT on mood and instrumental activities of daily living (IADL).

View Article and Find Full Text PDF

The effects of early-life whisker deprivation on adolescent behavior in C57BL/6J mice.

Brain Res

January 2025

epartment of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China. Electronic address:

Whisker deprivation at different stages of early development results in varied behavioral outcomes. However, there is a notable lack of systematic studies evaluating the specific effects of whisker deprivation from postnatal day 0 (P0) to P14 on adolescent behavioral performance in mice. To investigate these effects, C57BL/6J mice underwent whisker deprivation from P0 to P14 and were subsequently assessed at 5 weeks of age using a battery of tests: motor skills were evaluated using open field test; emotional behavior was evaluated using a series of anxiety- and depression-related behavioral tests; cognitive function was examined via novel location and object recognition tests; and social interactions were analyzed using three-chamber social interaction test.

View Article and Find Full Text PDF

Background: Deficits in emotion recognition have been shown to be closely related to social-cognitive functioning in schizophrenic. This study aimed to investigate the event-related potential (ERP) characteristics of social perception in schizophrenia patients and to explore the neural mechanisms underlying these abnormal cognitive processes related to social perception.

Methods: Participants included 33 schizophrenia patients and 35 healthy controls (HCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!