Alzheimer's disease (AD) is considered one of the most spouting elderly diseases. In 2015, AD is reported the US's sixth cause of death. Substantially, non-invasive imaging is widely employed to provide biomarkers supporting AD screening, diagnosis, and progression. In this study, Gaussian descriptors-based features are proposed to be efficient new biomarkers using Magnetic Resonance Imaging (MRI) T-weighted images to differentiate between Alzheimer's disease (AD), Mild Cognitive Impairment (MCI), and Normal controls (NC). Several Gaussian map-based features are extracted such as Gaussian shape operator, Gaussian curvature, and mean curvature. The aforementioned features are then introduced to the Support Vector Machine (SVM). They were, first, calculated separately for the Hippocampus and Amygdala. Followed by the fusion of the features. Moreover, Fusion of the regions before feature extraction was also employed. Alzheimer's disease Neuroimaging Initiative (ADNI) dataset, formed of 45, 55, and 65 cases for AD, MCI, and NC respectively, is appointed in this study. The shape operator feature outperformed the other features, with 74.6%, and 98.9% accuracy in the case of normal vs. abnormal, and AD vs. MCI classification respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447428 | PMC |
http://dx.doi.org/10.1038/s41598-023-40635-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!