Chronic pain causes both physical suffering and comorbid mental symptoms such as anhedonia. However, the neural circuits and molecular mechanisms underlying these maladaptive behaviors remain elusive. Here using a mouse model, we report a pathway from vesicular glutamate transporter 3 neurons in the dorsal raphe nucleus to dopamine neurons in the ventral tegmental area (VGluT3→DA) wherein population-level activity in response to innocuous mechanical stimuli and sucrose consumption is inhibited by chronic neuropathic pain. Mechanistically, neuropathic pain dampens VGluT3 → DA glutamatergic transmission and DA neural excitability. VGluT3 → DA activation alleviates neuropathic pain and comorbid anhedonia-like behavior (CAB) by releasing glutamate, which subsequently promotes DA release in the nucleus accumbens medial shell (NAcMed) and produces analgesic and anti-anhedonia effects via D2 and D1 receptors, respectively. In addition, VGluT3 → DA inhibition produces pain-like reflexive hypersensitivity and anhedonia-like behavior in intact mice. These findings reveal a crucial role for VGluT3 → DA → D2/D1 pathway in establishing and modulating chronic pain and CAB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447530 | PMC |
http://dx.doi.org/10.1038/s41467-023-40860-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!