A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Maternal di-(2-ethylhexyl) phthalate exposure elicits offspring IFN-λ upregulation: Insights from birth cohort, murine model, and in vitro mechanistic analysis. | LitMetric

Maternal di-(2-ethylhexyl) phthalate exposure elicits offspring IFN-λ upregulation: Insights from birth cohort, murine model, and in vitro mechanistic analysis.

Food Chem Toxicol

Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan; Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan. Electronic address:

Published: September 2023

AI Article Synopsis

  • * Analysis from a Taiwan study found a link between DEHP metabolite levels in pregnant women and elevated immune markers (IL-28A and IL-29) in their newborns' blood.
  • * Laboratory experiments revealed that DEHP and its metabolite, MEHP, increased immune marker expression in human cells, with specific cellular mechanisms identified that influence this response, indicating potential risks from early exposure.

Article Abstract

Maternal exposure to di-(2-ethylhexyl)-phthalate (DEHP), an environmental endocrine disruptor, may lead to developmental immunotoxicity in offspring. The causal relationship and underlying mechanism require further study. A subset of Taiwan Maternal and Infant Cohort Study data (n = 283) was analyzed and found a significant association between urinary DEHP metabolite levels from the third trimester of pregnancy and plasma levels of IL-28A and IL-29, named IFNλs, in cord blood. A trans-maternal murine model mimicking human DEHP exposure way showed that bone marrow-derived dendritic cells from maternal DEHP-exposed F1 offspring secreted higher IL-28A levels than control cells, indicating a potential causal relationship. Human bronchial epithelial cell lines treated with DEHP or its primary metabolite, mono-(2-ethyl-5-hexyl) phthalate (MEHP), expressed significantly higher levels of IFNλs mRNA or protein than controls. MEHP's effect on IFNλs expression was blocked by peroxisome proliferator-activated receptor α (PPARα) and PPARγ antagonists, and inhibited by a histone acetyltransferase inhibitor or a histone methyltransferase inhibitor. Chromatin immunoprecipitation assay showed that MEHP treatment promoted histone modifications at H3 and H4 proteins at the promoter regions of Il28a and Il29 genes. These results suggest maternal DEHP exposure could result in high IFNλ expression in offspring, and the health risk of early-life exposure requires further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2023.113993DOI Listing

Publication Analysis

Top Keywords

murine model
8
causal relationship
8
dehp exposure
8
maternal
5
exposure
5
dehp
5
maternal di-2-ethylhexyl
4
di-2-ethylhexyl phthalate
4
phthalate exposure
4
exposure elicits
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!