A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvqia91tj1j8q8p6tab2s5p9kgcsl3ir8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning Predicting Atrial Fibrillation as an Adverse Event in the Warfarin and Aspirin in Reduced Cardiac Ejection Fraction (WARCEF) Trial. | LitMetric

Machine Learning Predicting Atrial Fibrillation as an Adverse Event in the Warfarin and Aspirin in Reduced Cardiac Ejection Fraction (WARCEF) Trial.

Am J Med

Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, United Kingdom; The Department of Cardiovascular and Metabolic Medicine, University of Liverpool, United Kingdom; Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark. Electronic address:

Published: November 2023

AI Article Synopsis

  • * Machine learning models analyzed data from the WARCEF trial and found that marital status and living alone are significant predictors of developing atrial fibrillation, with unique risks for different ethnic groups.
  • * The study emphasizes the importance of social factors on health, suggesting the need for further research that examines diverse racial groups to understand the complexities of atrial fibrillation risk.

Article Abstract

Background: Atrial fibrillation and heart failure commonly coexist due to shared pathophysiological mechanisms. Prompt identification of patients with heart failure at risk of developing atrial fibrillation would allow clinicians the opportunity to implement appropriate monitoring strategy and timely treatment, reducing the impact of atrial fibrillation on patients' health.

Methods: Four machine learning models combined with logistic regression and cluster analysis were applied post hoc to patient-level data from the Warfarin and Aspirin in Patients with Heart Failure and Sinus Rhythm (WARCEF) trial to identify factors that predict development of atrial fibrillation in patients with heart failure.

Results: Logistic regression showed that White divorced patients have a 1.75-fold higher risk of atrial fibrillation than White patients reporting other marital statuses. By contrast, similar analysis suggests that non-White patients who live alone have a 2.58-fold higher risk than those not living alone. Machine learning analysis also identified "marital status" and "live alone" as relevant predictors of atrial fibrillation. Apart from previously well-recognized factors, the machine learning algorithms and cluster analysis identified 2 distinct clusters, namely White and non-White ethnicities. This should serve as a reminder of the impact of social factors on health.

Conclusion: The use of machine learning can prove useful in identifying novel cardiac risk factors. Our analysis has shown that "social factors," such as living alone, may disproportionately increase the risk of atrial fibrillation in the under-represented non-White patient group with heart failure, highlighting the need for more studies focusing on stratification of multiracial cohorts to better uncover the heterogeneity of atrial fibrillation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.amjmed.2023.07.019DOI Listing

Publication Analysis

Top Keywords

atrial fibrillation
36
machine learning
20
heart failure
16
patients heart
12
atrial
9
fibrillation
9
warfarin aspirin
8
warcef trial
8
logistic regression
8
cluster analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!