Fluorescent lamps are hazardous materials, as they contain toxic elements, which may lead to environmental contamination. Therefore, assessing potential environmental impacts arising from inadequate lamp disposal is paramount. Studies addressing the Life Cycle Analysis (LCA) of end-of-life fluorescent lamps are, however, still scarce, and inappropriate lamp disposal remains a matter of concern, especially in developing and underdeveloped countries. In Brazil, fluorescent lamps are still used countrywide and are often inadequately discarded. However, studies assessing fluorescent lamp impacts and potential impact reduction through enhanced recycling are still scarce in the country, despite Brazil's size and high waste generation rates. Furthermore, Brazil's lamp recycling program is a recent measure and still falls short of the country's needs. Thus, this study aimed to assess potential environmental impacts of end-of-life fluorescent lamps in Rio de Janeiro, the second largest capital in Brazil, to the best of our knowledge, for the first time. Potential impact reductions due to higher recycling program adherence considering 5, 20, 80 and 100 % recycling rates were also assessed. The findings indicate that the impact categories most influenced by end-of-life lamps were terrestrial ecotoxicity, human non-carcinogenic toxicity, global warming potential, and fossil resource scarcity. Increased recycling rates, in turn, reduced the environmental impact potential for all evaluated categories, reaching an almost 90 % reduction in most categories when applying a 100 % recycling rate. The current national program target recycling rate of 20 %, however, already contributes to an average impact reduction of over 70 %, comprising a more viable national application rate and already significantly contributing to reduced impacts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.139835 | DOI Listing |
Sci Rep
December 2024
The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
Light-emitting diode (LED) lamps are efficient elicitors of secondary metabolites. To investigate the influence of LED light on steviol glycosides (SGs) and phenolic compounds biosynthesis, stevia shoots were cultured under the following LED lights: white-WL, blue-B, red-R, 70% red and 30% blue-RB, 50% UV, 35% red and 15% blue-RBUV, 50% green, 35% red and 15% blue-RBG, 50% yellow, 35% red and 15% blue-RBY, 50% far-red, 35% red and 15% blue-RBFR and white fluorescent light (WFl, control). RBG light stimulated shoots' biomass production.
View Article and Find Full Text PDFChem Sci
November 2024
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
Unlike boron, nitrogen-containing multi-resonance emitters with thermally activated delayed fluorescence, here we report boron, sulfur (B, S)-based multi-resonance emitters with room-temperature phosphorescence (RTP) by inserting thiophene into a 5,9-dithia-13-boranaphtho[3,2,1-]anthracene skeleton that simultaneously realizes large singlet-triplet energy splitting and strong spin-orbital coupling, leading to efficient room-temperature phosphorescence in an amorphous state. Unlike most RTP emitters with ultraviolet excitation, the multi-resonance RTP emitters exhibit strong phosphorescence under daily-use blue/white LED lamps owing to their intense absorption in the visible-light region (400-486 nm). Meanwhile, such RTP behavior can be tuned by the number and fusing pattern of the thiophene moieties, with the emitters containing thiophene linked to boron atoms α-positions exhibiting bathochromatically shifted emissions and longer phosphorescence lifetimes (47.
View Article and Find Full Text PDFJ Environ Manage
December 2024
US Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, USA.
Talanta
February 2025
Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Xuchang, 461000, PR China; The College of Chemistry, Zhengzhou University, Zhengzhou, 450052, PR China. Electronic address:
Phosgene is a suffocating toxic gas that seriously threatens human health and public security. With this research, we developed a simple ratiometric fluorescent probe (1) bearing indole and benzimidazole moieties as the sensing sites and employed it for the aggregation-induced emission-based (AIE-based) detection of phosgene. It was the first time that the probe could detect phosgene in an almost pure aqueous solution (f = 99.
View Article and Find Full Text PDFTalanta
February 2025
Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China. Electronic address:
Mycotoxins are widely prevalent in various agricultural commodities, whose excessive consumption can pose significant risks to human health. In this study, we developed a facile mycotoxin detection platform based on branched hybridization chain reaction coupled with lateral flow assay. Ochratoxin A/Aflatoxin B1 bind to aptamers triggering the release of initiators, which leads to bHCR amplification and forms three-dimensional dendritic DNA nanostructures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!