A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Long-term missing role of small colloids and nanoparticles on the loading and speciation of phosphorus in catfish aquaculture ponds in west Alabama. | LitMetric

Increasing loading of phosphorus (P) into freshwater systems is deemed as one of the key drivers triggering harmful algal blooms (HABs). However, conventional water quality monitoring of P normally uses the operational cutoff (e.g., 450-nm filter membrane) to separate particulate and dissolved phases (entities passing through the 450-nm membrane are regarded as dissolved phase), which completely neglects the roles of small colloids (450-100 nm) and nanoparticles (100-1 nm). Herein, a new particle size separation approach was used to separate water samples collected from catfish aquaculture ponds in west Alabama into six size fractions: large particles (>1000 nm), large colloids (1000-450 nm), small colloids (450-100 nm), large nanoparticles (100-50 nm), small nanoparticles (50-1 nm), and the truly dissolved phase (<1 nm). The speciation and concentration of P in these six size fractions were then investigated using Hedley's sequential extraction method. The new particle size separation results showed that particle loading (mass) followed the order: >1000 nm, 450-100 nm, 1000-450 nm, 100-50 nm, and 50-1 nm. This is mainly due to the abundance of large-sized (>1000 nm) zooplankton and phytoplankton such as algae and cyanobacteria in the catfish aquaculture ponds. Importantly, the small colloid (450-100 nm) and nanoparticle (100-1 nm) size fractions, which were previously regarded as the dissolved phase using the 450-nm membrane filtration operation, accounted for ∼41.8% of the total particle mass. The Hedley's sequential extraction results showed that sodium hydroxide (NaOH)-extracted P represented the largest P pool, followed by water (HO)- and sodium bicarbonate (NaHCO)-extracted P pools. Smaller particles exhibited a higher loading of P due to their large surface areas. These new findings suggest that the new particle size separation approach needs to be adopted for future water quality monitoring and mitigation of HABs in freshwater ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.139906DOI Listing

Publication Analysis

Top Keywords

small colloids
12
catfish aquaculture
8
aquaculture ponds
8
ponds west
8
west alabama
8
dissolved phase
8
colloids 450-100 nm
8
long-term missing
4
missing role
4
small
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!