Vibrio parahaemolyticus is a common pathogen, and has emerged with multiple antimicrobial resistance (AMR). However, few studies have conducted large-scale investigations of AMR and virulence trends of V. parahaemolyticus worldwide. This study longitudinally monitored antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) trends of 1540 V. parahaemolyticus isolates isolated from 1951 to 2021. The number of ARGs in V. parahaemolyticus isolates distinctly increased over the years (P = 5.9e-10), while the number of VFGs decreased significantly (P < 2.2e-16). However, the number of VFGs of isolates isolated from humans has not changed significantly over the years (R = 0.013, P = 0.74), suggesting that the pathogenic risk to humans has not been reduced. Besides, mobile genetic elements are important contributors to ARGs in V. parahaemolyticus (R = 0.34, P < 2.2e-16), but have no promoting effect on VFGs (P = 0.50). The structural equation model illustrated that the human development index promoted the consumption of antibiotics, thereby indirectly promoting an increase in the AMR of the V. parahaemolyticus isolates. Finally, the random forest was performed to predict the ARG and VFG risks of global terrestrial V. parahaemolyticus isolates, and successfully map these threats with over 80% accuracy. This study aimed to evaluate the global risks posed by AMR and virulence, which helps to develop methods specifically targeting V. parahaemolyticus to mitigate these threats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.139905DOI Listing

Publication Analysis

Top Keywords

antimicrobial resistance
8
resistance genes
8
vibrio parahaemolyticus
8
parahaemolyticus isolates
8
parahaemolyticus
5
distinct increase
4
increase antimicrobial
4
genes vibrio
4
parahaemolyticus decades
4
decades worldwide
4

Similar Publications

Shotgun and proximity-ligation metagenomic sequencing were used to generate thousands of metagenome assembled genomes (MAGs) from the untreated wastewater, activated sludge bioreactors, and anaerobic digesters from two full-scale municipal wastewater treatment facilities. Analysis of the antibiotic resistance genes (ARGs) in the pool of contigs from the shotgun metagenomic sequences revealed significantly different relative abundances and types of ARGs in the untreated wastewaster compared to the activated sludge bioreactors or the anaerobic digesters (p < 0.05).

View Article and Find Full Text PDF

AIE-Active Antibacterial Photosensitizer Disrupting Bacterial Structure: Multicenter Validation against Drug-Resistant Pathogens.

Small Methods

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.

Antimicrobial resistance (AMR) has emerged as a global challenge in treating bacterial infections, creating an urgent need for broad-spectrum antimicrobial agents that can effectively combat multidrug-resistant (MDR) bacteria. Despite advancements in novel antimicrobial agents, many fail to comprehensively cover common resistant bacterial strains or undergo rigorous multi-center validation. Herein, a cationic AIE-active photosensitizers are developed, ITPM, derived from a triphenylamine-pyridine backbone to address the MDR challenge.

View Article and Find Full Text PDF

Challenges and considerations in liposomal hydrogels for the treatment of infection.

Expert Opin Drug Deliv

January 2025

Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway.

Introduction: Liposomal hydrogels are novel drug delivery systems that comprise preformed liposomes incorporated in hydrogels destined for mostly localized drug therapy, herewith antimicrobial therapy. The formulation benefits from versatility of liposomes as lipid-based nanocarriers that enable delivery of various antimicrobials of different lipophilicities, and secondary vehicle, hydrogel, that assures better retention time of formulation at the infection site. Especially in an era of alarming antimicrobial resistance, efficient localized antimicrobial therapy that avoids systemic exposure of antimicrobial and related side effects is crucial.

View Article and Find Full Text PDF

Background/objectives: Type 2 diabetes mellitus (T2DM) is considered a serious risk to public health since its prevalence is rapidly increasing worldwide despite numerous therapeutics. Insulin resistance in T2DM contributes to chronic inflammation and other metabolic abnormalities that generate fat accumulation in the liver, eventually leading to the progression of metabolic dysfunction-associated fatty liver disease (MAFLD). Recently, the possibility that microbial-derived metabolites may alleviate MAFLD through enterohepatic circulation has emerged, but the underlying mechanism remains unclear.

View Article and Find Full Text PDF

, a Gram-negative anaerobic bacterium colonizing the intestinal mucus layer, is regarded as a promising "next-generation probiotic". There is mounting evidence that diabetes and its complications are associated with disorders of abundance. Thus, and its components, including the outer membrane protein Amuc_1100, -derived extracellular vesicles (AmEVs), and the secreted proteins P9 and Amuc_1409, are systematically summarized with respect to mechanisms of action in diabetes mellitus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!