In order to refine the treatment of microalgae consortium (MC) for municipal wastewater (MWW) during the winter, this study investigated the effectiveness of tubular and aeration column photobioreactors (TPBR and APBR) in wastewater treatment plant (WWTP) during winter by two start-up modes: microalgae/microalgae-activated sludge (AS). The operation results showed that under 5.7-13.1 °C, TPBR enhanced the assimilation of N and P pollutant by microalgal accumulation, meeting the Chinese discharge standard within 24 h (NH-N, TP, and COD ≤8.0, 0.5, and 50 mg·L). The microbial community profiles were identified and showed that inoculating AS under low-temperature still promoted bacterial interspecific association, but influenced by the inhibition of microbial diversity by the homogeneous circulation of TPBR, the nitrogen transfer function of MC was lower than that of APBR at low temperatures, except nitrogen fixation (K02588), nitrosification (K10944, K10945, and K10946), assimilatory nitrate reduction (K00366), and ammonification (K01915 and K05601). And the intermittent aeration in the APBR was still beneficial in increasing microbial diversity, which was more beneficial for reducing COD through microbial collaboration. In the treatment, the cryotolerant MGPM were Delftia, Romboutsia, Rhizobiales, and Bacillus, and the cold stress-related genes that were highly up-regulated were defense signaling molecules (K03671 and K00384), cold shock protein gene (K03704), and cellular protector (K01784) were present in both PBRs. This study provided a reference for the feasibility of the low temperature treatment of MC with the different types of PBR, which improved the application of wastewater treatment in more climatic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.139910 | DOI Listing |
Chem Biodivers
January 2025
Yangzhou University, College of Food Science and Engineering, Huayang west road, 225127, Yangzhou, CHINA.
The Lentinus edodes polysaccharide (LEP) was extracted with a new subcritical water extraction (SWE) enhanced with deep eutectic solvent (DES) method and then purified with a DEAE-52 cellulose column and a Sephadex G-100 column. Two purified polysaccharides (LEP1 and LEP2) were obtained and their structure, antioxidant activity, and immunomodulatory activity were analyzed. LEP1 and LEP2 were composed of mannose, glucose, and galactose with a molar ratio of 1:12.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
Papermaking wastewater consists of a sizable amount of industrial wastewater; hence, real-time access to precise and trustworthy effluent indices is crucial. Because wastewater treatment processes are complicated, nonlinear, and time-varying, it is essential to adequately monitor critical quality indices, especially chemical oxygen demand (COD). Traditional models for predicting COD often struggle with sensitivity to parameter tuning and lack interpretability, underscoring the need for improvement in industrial wastewater treatment.
View Article and Find Full Text PDFSci Rep
January 2025
Chemical Engineering and Pilot Plant Department, Engineering & Renewable Energy Research Institute, National Research Centre (NRC), Giza, 12622, Egypt.
Humans have contaminated water supplies with harmful compounds, including different heavy metals. Heavy metals can interfere with human and animal vital organs and metabolic processes. They are also persistent and bioaccumulative.
View Article and Find Full Text PDFNat Commun
January 2025
Centro de Astrobiologia (CAB), INTA-CSIC, Torrejón de Ardoz, Madrid, Spain.
Microorganisms are present in snow/ice of the Antarctic Plateau, but their biogeography and metabolic state under extreme local conditions are poorly understood. Here, we show the diversity and distribution of microorganisms in air (1.5 m height) and snow/ice down to 4 m depth at three distant latitudes along a 2578 km transect on the East Antarctic Plateau on board an environmentally friendly, mobile platform.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sun Yat-Sen University, Environmental Science and Engineering, CHINA.
Despite recent substantial advances in water treatment, the ability to selectively degrade trace micropollutants in real waters with complex matrix components remains a grand challenge. Here we report rational crafting of graphene oxide (GO)-wrapped defective TiO2 composite catalysts that creates nanoscopic confinement over the TiO2 surface within GO, thereby enabling the selective degradation of micropollutants through effectively excluding natural organic matter (NOM) and anions from the nanoconfined catalytic sites. In contrast to unconfined counterparts, the nanoconfined composite catalysts retain high degradation efficiency when exposed to various concentrations of NOM and anions, even in real water samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!