The Mar Menor lagoon combined high biological production and environmental quality, making it an important economic engine. However, the pressure of human activities put its ecological integrity at risk, the oldest environmental impact being mining activity recorded since Roman times, about 3500 years ago, reaching its maximum intensity in the 20th century, contributing heavy metals to the lagoon sediments for almost 30 centuries. This work reviews the spatiotemporal evolution of the main heavy metals in this coastal lagoon using data from 272 surface sediment samples obtained during the last 40 years and two deep cores covering the total history of the lagoon (c. 6500 yrs BP), so as their incidence in the lagoon trophic web. The observed patterns in sedimentation, sediment characteristics and heavy metal content respond to the complex interaction, sometimes synergistic and sometimes opposing, between climatic conditions, biological production and human activities, with mining being mainly responsible for Pb, Zn and Cd inputs and port activities for Cu. High Fe/Al, Ti/Al and Zr/Al ratios identify periods of mining activity, while periods of arid climatic conditions and deforestation that increase erosion processes in the drainage basin and silt concentration in the lagoon sediments are determined by high Zr/Rb and, to a lesser extent, Zr/Al and Si/Al ratios. After the cessation of direct discharges into the lagoon in the 1950s, the recent evolution of heavy metals concentration and its spatial redistribution would be determined by hydrographic and biogeochemical processes, solubility of different elements, and coastal works in harbours and on beaches. The bioconcentration factor decreases along the trophic levels of the food web, suggesting that the lagoon ecosystem provides an important service by retaining heavy metals in the sediment, largely preventing their bioavailability, but actions involving resuspension or changes in sediment conditions would pose a risk to organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.166417DOI Listing

Publication Analysis

Top Keywords

heavy metals
16
lagoon
9
heavy metal
8
mar menor
8
coastal lagoon
8
biological production
8
human activities
8
mining activity
8
lagoon sediments
8
climatic conditions
8

Similar Publications

High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.

View Article and Find Full Text PDF

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Currently, the development of red Mn-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn-activated fluoride luminescent materials is still a crucial issue. Herein, a new red RbNaVF:Mn luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method.

View Article and Find Full Text PDF

Background: A decline in skeletal muscle mass and function known as skeletal muscle sarcopenia is an inevitable consequence of aging. Sarcopenia is a major cause of decreased muscle strength, physical frailty and increased muscle fatigability, contributing significantly to an increased risk of physical disability and functional dependence among the elderly. There remains a significant need for a novel therapy that can improve sarcopenia and related problems in aging.

View Article and Find Full Text PDF

In order to solve the problems of high planting density, similar color, and serious occlusion between spikes in sorghum fields, such as difficult identification and detection of sorghum spikes, low accuracy and high false detection, and missed detection rates, this study proposes an improved sorghum spike detection method based on YOLOv8s. The method involves augmenting the information fusion capability of the YOLOv8 model's neck module by integrating the Gold feature pyramid module. Additionally, the SPPF module is refined with the LSKA attention mechanism to heighten focus on critical features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!