Ferroptosis triggered by STAT1- IRF1-ACSL4 pathway was involved in radiation-induced intestinal injury.

Redox Biol

Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215006, PR China. Electronic address:

Published: October 2023

Radiation-induced intestinal injury (RIII), a common gastrointestinal complication caused by radiotherapy on pelvic, abdominal and retroperitoneal tumors, seriously affects the life quality of patients and may result in termination of radiotherapy. At present, the pathogenesis of RIII has not been fully understood. Herein, we demonstrated that ferroptosis played a critical role in RIII occurrence. The RNA sequencing analysis strongly hinted ferroptosis was involved in RIII mice. In line with this, the levels of 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), markers of lipid peroxidation, remarkably increased in RIII mice. And the ferroptosis inhibitor, Ferrostatin-1 (Fer-1), improved the mice survival and alleviated intestinal fibrosis in vivo. Moreover, our results revealed that arachidonic acid (AA) enhanced ferroptosis in cultured intestinal epithelial cells (IECs) and organoids in vitro after irradiation, and AA gavage aggravated RIII in mice. Mechanistic studies revealed the level of ACSL4 protein significantly increased in mouse jejunums and IECs after irradiation. Radiation-induced ferroptosis in IECs was also prevented following ACSL4 knockdown or with the function inhibitor of ACSL4. Furthermore, we found that transcription of ACSL4 induced by irradiation was regulated by STAT1/IRF1 axis, and AMPK activation triggered by AA negatively regulated radiation-induced ferroptosis. Taken together, our results suggest that ferroptosis mediates RIII and reducing dietary AA intake as well as targeting the STAT1-IRF1-ACSL4 axis or AMPK may be the potential approaches to alleviate RIII.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466894PMC
http://dx.doi.org/10.1016/j.redox.2023.102857DOI Listing

Publication Analysis

Top Keywords

riii mice
12
ferroptosis
8
radiation-induced intestinal
8
intestinal injury
8
riii
8
radiation-induced ferroptosis
8
axis ampk
8
ferroptosis triggered
4
triggered stat1-
4
stat1- irf1-acsl4
4

Similar Publications

Purpose: Polymorphism and mutations of human leukocyte antigens (HLAs) and calreticulin are risk factors for uveitis. Here, we sought to determine the therapeutic effects of Clarstatin, a cyclic peptide antagonist of the HLA shared-epitope-calreticulin interaction, in experimental autoimmune uveitis (EAU) models.

Methods: Mice were injected with Clarstatin intraperitoneally and its effect was compared to that of corticosteroid.

View Article and Find Full Text PDF

Background: Radiation-induced intestinal injury (RIII) interrupts the scheduled processes of abdominal and pelvic radiotherapy (RT) and compromises the quality of life of cancer survivors. However, the specific regulators and mechanisms underlying the effects of RIII remain unknown. The biological effects of RT are caused primarily by DNA damage, and ataxia telangiectasia mutated (ATM) is a core protein of the DNA damage response (DDR).

View Article and Find Full Text PDF

Purpose: The aim of this study was to assess the functional and clinical impact of intravitreal administration of a neutralizing anti-IL-6 antibody in the treatment of experimental autoimmune uveitis (EAU) in mice.

Methods: EAU was induced in 17 female B10.RIII mice by administering Inter-Photoreceptor-Binding-Protein (IRBP) in complete Freund's adjuvant, followed by a boost with Pertussis toxin.

View Article and Find Full Text PDF

EGCG protects intestines of mice and pelvic cancer patients against radiation injury via the gut microbiota/D-tagatose/AMPK axis.

Radiother Oncol

January 2025

Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Center of PRaG therapy, Center for Cancer Diagnosis and Treatment, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China. Electronic address:

Background And Purpose: Radiation-induced intestinal injury (RIII) compromises the clinical utility of pelvic radiotherapy (RT). We aimed to explore the protective effect and underlying mechanism of (-)-epigallocatechin-3-gallate (EGCG) on RIII.

Materials And Methods: We evaluated the protective effect of EGCG on intestine in RIII mouse model and pelvic cancer patients, while explored the underlying mechanism through (1) 16S rRNA sequencing, (2) metabolomic profiles, (3) fresh sterile fecal filtrate (SFF) transplantation, and (4) transcriptome sequencing.

View Article and Find Full Text PDF

In patients with abdominal or pelvic tumors, radiotherapy can result in radiation-induced intestinal injury (RIII), a potentially severe complication for which there are few effective therapeutic options. Sitagliptin (SI) is an oral hypoglycemic drug that exhibits antiapoptotic, antioxidant, and anti-inflammatory activity, but how it influences RIII-associated outcomes has yet to be established. In this study, a pH-responsive metal-organic framework-based nanoparticle platform was developed for the delivery of SI (SI@ZIF-8@MS NP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!