AI Article Synopsis

Article Abstract

Magnetic resonance imaging (MRI) is extensively utilized in clinical practice for diagnostic purposes, owing to its non-invasive nature and remarkable ability to provide detailed characterization of soft tissues. However, its drawback lies in the prolonged scanning time. To accelerate MR imaging, how to reconstruct MR images from under-sampled data quickly and accurately has drawn intensive research interest; it, however, remains a challenging task. While some deep learning models have achieved promising performance in MRI reconstruction, these models usually require a substantial quantity of paired data for training, which proves challenging to gather and share owing to high scanning costs and data privacy concerns. Federated learning (FL) is a potential tool to alleviate these difficulties. It enables multiple clinical clients to collaboratively train a global model without compromising privacy. However, it is extremely challenging to fit a single model to diverse data distributions of different clients. Moreover, existing FL algorithms treat the features of each channel equally, lacking discriminative learning ability across feature channels, and hence hindering their representational capability. In this study, we propose a novel Adaptive Channel-Modulated Federal learning framework for personalized MRI reconstruction, dubbed as ACM-FedMRI. Specifically, considering each local client may focus on features in different channels, we first design a client-specific hypernetwork to guide the channel selection operation in order to optimize the extracted features. Additionally, we introduce a performance-based channel decoupling scheme, which dynamically separates the global model at the channel level to facilitate personalized adjustments based on the performance of individual clients. This approach eliminates the need for heuristic design of specific personalization layers. Extensive experiments on four datasets under two different settings show that our ACM-FedMRI achieves outstanding results compared to other cutting-edge federated learning techniques in the field of MRI reconstruction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.107330DOI Listing

Publication Analysis

Top Keywords

federated learning
12
mri reconstruction
12
adaptive channel-modulated
8
magnetic resonance
8
global model
8
learning
6
channel-modulated personalized
4
personalized federated
4
learning magnetic
4
resonance image
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!