Impact of temperature on the performance of compost-based landfill biocovers.

J Environ Manage

Carleton University, Dept. of Civil & Environmental Engineering, Ottawa, ON, K1S 5B6, Canada.

Published: October 2023

Methane (CH) emissions from landfills are a major contributor to global greenhouse gas emissions. Compost-based biocovers offer a viable approach to reduce CH emissions from landfills; however, the effectiveness in climates with varying temperatures is not well understood. The methane removal performances of two compost-based biocover materials (food and yard waste compost) were examined under different temperature conditions using laboratory column experiments. A reactive transport model was used to simulate the experimental results to develop a better quantitative understanding of the effect of temperature on overall methane removal efficiency. As expected, experimental results indicated that the oxidation rate was influenced by temperature, as it was reduced when the temperature decreased from 22 °C to 8 °C. However, some oxidation was observed at a lower temperature, which was confirmed by CO concentrations above the initial level and the observed temperatures above the exposure temperature along the height of biocover column. Furthermore, results showed that when the compost-based materials were subjected to 8 °C and then increased to 22 °C, methane oxidation within the material recovered quickly and returned to similar oxidation rates as observed before the temperature was reduced, suggesting that compost-based biocovers may not be affected by cyclic temperature variations when used in colder climates. Methane oxidation capacity was limited by the maximum oxidation rate, the biocover porosity, and the gas saturation profile that affects residence time and overall methane oxidation in the columns. The model results show that the CH oxidation rate was reduced by one order of magnitude when the temperature decreased from 22 °C to 8 °C. Therefore, the calculated Q values were 4.19 and 5.18 for the food and yard waste compost, respectively. Overall, compost-based landfill biocovers, such as food and yard waste compost, are capable of mitigate CH emissions from old and small landfills under different temperature conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.118780DOI Listing

Publication Analysis

Top Keywords

food yard
12
yard waste
12
waste compost
12
oxidation rate
12
methane oxidation
12
temperature
10
compost-based landfill
8
landfill biocovers
8
emissions landfills
8
compost-based biocovers
8

Similar Publications

Background: Homegardens (HGs) are well-time-honored traditional land use systems in small plots of land with purposely designed intricate structure and a mixture of planted vascular plants (VPs) for different purposes. Hence, the present study was initiated to investigate the ethnobotanical information of vascular plants of homegardens and their use, conservation and management practice by the people of Dawuro in southwestern Ethiopia.

Methods: A total of 162 farmer informants were selected and interviewed within a distance of < 2 km, 2-4 km and > 4 km between the natural forest and homegardens, and 0.

View Article and Find Full Text PDF

The rising pandemic of obesity has received significant attention. Yet, more safe and effective targeted strategies must be used to mitigate its impact on individual health and the global disease burden. While the health benefits of resistant starch (RS) are well-documented, the role of RT-90 (a phosphate-modified tapioca RS containing 90.

View Article and Find Full Text PDF

Background: The Vero cell rabies vaccine is currently the most widely used human rabies vaccine. However, owing to the presence of residual host cell DNA (HCD) in the final product and the potential tumorigenicity of the DNA of high-passage Vero cells, the WHO not only sets a limit on the number of times cells used in production can be passaged, but also imposes strict requirements on the amount of residual HCD in the final vaccine product.

Objectives: To systematically reduce the HCD level in the final vaccine product, multiple purification steps are included in the vaccine production process.

View Article and Find Full Text PDF

Role of in Filamentous Growth and Pathogenicity of .

J Fungi (Basel)

November 2024

Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.

is a dimorphic fungus that specifically infects , causing stem swelling and the formation of an edible fleshy stem known as jiaobai. The pathogenicity of is closely associated with the development of jiaobai and phenotypic differentiation. Msb2 acts as a key upstream sensor in the MAPK (mitogen-activated protein kinase) signaling pathway, playing critical roles in fungal hyphal growth, osmotic regulation, maintenance of cell wall integrity, temperature adaptation, and pathogenicity.

View Article and Find Full Text PDF

Stimuli-responsive dual-drug loaded microspheres with differential drug release for antibacterial and wound repair promotion.

Colloids Surf B Biointerfaces

December 2024

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China. Electronic address:

The healing of infected wounds is a complex and dynamic process requiring tailored treatment strategies that address both antimicrobial and reparative needs. Despite the development of numerous drugs, few approaches have been devised to optimize the timing of drug release for targeting distinct phases of infection control and tissue repair, limiting the overall treatment efficacy. Here, a stimuli-responsive microsphere encapsulating dual drugs was developed to facilitate differential drug release during distinct phases of antibacterial and repair promotion, thereby synergistically enhancing wound healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!