Density Functional Theory Study of Synergistic Gas Sensing Using an Electrically Conductive Mixed Ligand Two-Dimensional Metal-Organic Framework.

ACS Sens

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

Published: September 2023

Two-dimensional conductive metal-organic frameworks (2D-cMOFs) have been adopted in electrochemical sensing applications owing to their superior electrical conductivity and large surface area. Here, we performed a density functional theory (DFT) analysis to study the synergistic impact of introducing a secondary organic ligand to the 2D-cMOF system. In this study, cobalt-hexaiminobenzene (Co-HIB) and cobalt-2,3,6,7,10,11-hexaiminotriphenylene (Co-HITP) were combined to form a mixed ligand MOF named, Co-HIB-HITP. A DFT-level comparative study was designed to access stability, synergistic gas adsorption capability, and gas adsorption mechanism, important factors in sensing material development. A potential energy surface calculation predicted the structural stability of Co-HIB-HITP at larger interlayer displacements around 3.6-4.2 Å regions along the -plane than its unmixed states, Co-HIB and Co-HITP, indicating the tunability of the stacking mode using the mixed ligand system. Furthermore, the adsorption capabilities toward toxic gases, NH, HS, NO, and NO, were investigated, and Co-HIB-HITP revealed superiority over unmixed 2D-cMOFs in HS and NH gas adsorption energies by showing 158 and 170% improvement, respectively. Finally, an electron charge density analysis revealed Co-HIB-HITP's unique stacking mode and Co-metal density as contributing factors to its gas-selective synergy effect. The AB stacked layers and an intermediate metal density (5.25%) significantly improved the electrostatic interactions with HS and NH by inducing a change in the chemical environment of the gas binding sites. This work proposes the dual-ligand 2D-cMOF as the promising design strategy for the next-generation sensing material.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.3c00965DOI Listing

Publication Analysis

Top Keywords

mixed ligand
12
gas adsorption
12
density functional
8
functional theory
8
study synergistic
8
synergistic gas
8
sensing material
8
stacking mode
8
density
5
gas
5

Similar Publications

Aggregation-induced emission and absorption enhancement of mixed-valent rhenium oxide quantum dots by triethylamine: Implications for food safety monitoring.

J Hazard Mater

December 2024

Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; Center for Nanoscience & Nanotechnology, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No.100, Shiquan 1st Rd., Kaohsiung 80708, Taiwan. Electronic address:

Food freshness monitoring and volatile amine detection are key to food safety. In this study, we demonstrated the applicability of mixed-valence rhenium oxide quantum dots (MV-ReOQDs), synthesized via the hydrothermal reaction of α-cyclodextrin and rhenium ion precursors, in triethylamine (TEA) sensing. Spectroscopic correlation techniques showed that the developed MV-ReOQDs possessed mixed-valent rhenium, α-cyclodextrin as capped ligand, partially carbonized surface, and amorphous phase structure.

View Article and Find Full Text PDF

Dioxygen (O) is a potent oxidant used by aerobic organisms for energy transduction and critical biosynthetic processes. Numerous metalloenzymes harness O to mediate C-H bond hydroxylation reactions, but most commonly feature iron or copper ions in their active site cofactors. In contrast, many manganese-activated enzymes─such as glutamine synthetase and isocitrate lyase─perform redox neutral chemical transformations and very few are known to activate O or C-H bonds.

View Article and Find Full Text PDF

Substrate-Mediated Growth of Au Nanowires Under Weak CTAB Control and Rapid Au Deposition.

Small Methods

December 2024

Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.

The selective Au deposition at the Au-substrate interface is known to give ultrathin Au nanowires and the synthesis usually employs strong thiol-based ligands. It is shown that, by increasing the rate of Au deposition, weak cetyltrimethylammonium bromide (CTAB) can be made to behave like a strong ligand, so that it induces Active Surface Growth and gives Au nanowires. The ligand strength also depends on the packing interactions in the ligand layer, in the order of CTAB, CTAB, and CTAB.

View Article and Find Full Text PDF

The continuous exposure of chemical pesticides in agriculture, their contamination in soil and water pose serious threat to the environment. Current study used an approach to evaluate various pesticides like Hexaconazole, Mancozeb, Pretilachlor, Organophosphate and λ-cyhalothrin degradation capability of esterase. The enzyme was isolated from Salinicoccus roseus.

View Article and Find Full Text PDF

Quinazoline derivatives as novel bacterial sphingomyelinase enzyme inhibitors.

Bioorg Chem

December 2024

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye. Electronic address:

Bacillus cereus sphingomyelinase C (B. cereus SMase), which plays a crucial role in bacterial virulence, has emerged as a new therapeutic target for treating opportunistic infections caused by this pathogen. It also shares catalytic domain similarity with human neutral sphingomyelinase 2 (nSMase2), which is implicated in Alzheimer's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!