Oxygen- and nitrogen-heteroatom-doped, water-dispersible, and bright blue-fluorescent carbon dots (ON-CDs) were prepared for the selective and sensitive determination of 2,4,6-trinitrophenol (picric acid, PA). ON-CDs with 49.7% quantum yield were one-pot manufactured by the reflux method using citric acid, d-glucose, and ethylenediamine precursors. The surface morphology of ON-CDs was determined by scanning transmission electron microscopy, high-resolution transmission electron microscopy, dynamic light scattering, Raman, infrared, and X-ray photoelectron spectroscopy techniques, and their photophysical properties were estimated by fluorescence spectroscopy, UV-vis spectroscopy, fluorescence lifetime measurement, and 3D-fluorescence excitation-emission matrix analysis. ON-CDs at an average particle size of 3.0 nm had excitation/emission wavelengths of 355 and 455 nm, respectively. With the dominant inner-filter effect- and hydrogen-bonding interaction-based static fluorescence quenching phenomena supported by ground-state charge-transfer complexation (CTC), the fluorescence of ON-CDs was selectively quenched with PA in the presence of various types of explosives (i.e., 2,4,6-trinitrotoluene, tetryl, 1,3,5-trinitroperhydro-1,3,5-triazine, 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane, pentaerythritol tetranitrate, 3-nitro-1,2,4-triazole-5-one, and TATP-hydrolyzed HO). The analytical results showed that the emission intensity varied linearly with a correlation coefficient of 0.9987 over a PA concentration range from 1.0 × 10 to 11.0 × 10 M. As a result of ground-state interaction (H-bonding and CTC) of ON-CDs with PA, an orange-colored complex was formed different from the characteristic yellow color of PA in an aqueous medium, allowing naked-eye detection of PA. The detection limits for PA with ON-CDs were 12.5 × 10 M (12.5 pM) by emission measurement and 9.0 × 10 M (0.9 nM) by absorption measurement. In the presence of synthetic explosive mixtures, common soil cations/anions, and camouflage materials, PA was recovered in the range of 95.2 and 102.5%. The developed method was statistically validated against a reference liquid chromatography coupled to tandem mass spectrometry method applied to PA-contaminated soil. In addition, a poly(vinyl alcohol)-based polymer composite film {PF(ON-CDs)} was prepared by incorporating ON-CDs, enabling the smartphone-assisted fluorometric detection of PA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485801PMC
http://dx.doi.org/10.1021/acsami.3c07938DOI Listing

Publication Analysis

Top Keywords

polymer composite
8
picric acid
8
on-cds
8
transmission electron
8
electron microscopy
8
heteroatom-doped carbon
4
carbon quantum
4
quantum dots
4
dots polymer
4
composite dual-mode
4

Similar Publications

Objective: To compare the translucency and contrast ratio of 13 different resin based restorative materials and to evaluate the effect of 2 different bleaching methods on the translucency and contrast ratio of these materials.

Methods: In this study, a total of 260 samples were prepared, 20 from each of 13 different dimethacrylate-based restorative materials. Then, each material group was divided into 4 subgroups.

View Article and Find Full Text PDF

Integrating electrospun aligned fiber scaffolds with bovine serum albumin-basic fibroblast growth factor nanoparticles to promote tendon regeneration.

J Nanobiotechnology

December 2024

State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.

Background: Electrospun nanofiber scaffolds have been widely used in tissue engineering because they can mimic extracellular matrix-like structures and offer advantages including high porosity, large specific surface area, and customizable structure. In this study, we prepared scaffolds composed of aligned and random electrospun polycaprolactone (PCL) nanofibers capable of delivering basic fibroblast growth factor (bFGF) in a sustained manner for repairing damaged tendons.

Results: Aligned and random PCL fiber scaffolds containing bFGF-loaded bovine serum albumin (BSA) nanoparticles (BSA-bFGF NPs, diameter 146 ± 32 nm) were fabricated, respectively.

View Article and Find Full Text PDF

Objectives: To compare the mechanical performance of partially replaced (repaired) intra-coronal restorations to totally replaced ones in root canal-treated teeth.

Methods: Thirty maxillary second premolars were selected according to strict criteria, mounted on moulds, and had mesio-occluso-distal (MOD) cavities prepared. Resin composite restorative material was used to perform the initial restoration, followed by aging procedures using thermo-mechanical cycling fatigue to replicate six months of intraoral aging.

View Article and Find Full Text PDF

A novel proposal is introduced with an unlabeled electrochemical immunosensor for the detection of tumor broad-spectrum biomarker vascular endothelial growth factor (VEGF165) Copper-based metal organic frameworks (Cu MOFs)-carbon nanotubes (MWCNTs) were employed as its substrates, functionalized with methylene blue (MB) for signal enhancement. Cu-MOFs-MWCNTs nanocomposites were synthesized successfully via a solvothermal method and were then deposited on the surface of a glassy carbon electrode (GCE), with the addition of methylene blue to amplify the signal. Due to the expansive specific surface area provided by the carbon nanotubes and the amino groups facilitated by the metal-organic framework nanomaterials, the anti-VEGF165 monoclonal antibody was immobilized on the electrochemical immunosensor through covalent bonding, which could bind specifically to VEGF165, thereby causing a detectable change in the current.

View Article and Find Full Text PDF

In this research, 3-(trimethoxysilyl)propyl methacrylate (MPS) silane agent was applied to modify the extracted wheat straw (WS) cellulose as a natural biopolymer. Polyacrylonitrile (PAN) was attached to the MPS-modified WS (MPS-WS) via in-situ polymerization to form PAN-WS biocomposite. AO-WS amidoximated biocomposite adsorbent was synthesized through amidoxime reaction and the effects of different parameters including agitation speed, metal ion concentration, and adsorbent dosage on its efficiency of Pb(II) removal were investigated using the Taguchi experimental design method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!