Multiplexed high-density label super-resolution microscopy image reconstruction by integrating exchangeable single-molecule localization (IRIS) enables elucidating fine structures and molecular distribution in cells and tissues. However, fast-dissociating binders are required for individual targets. Here, we present a protocol for generating antibody-based IRIS probes from existing antibody sequences. We describe steps for retrieving antibody sequences from databases. We then detail the construction, purification, and evaluation of recombinant probes after site-directed mutagenesis at the base of complementarity-determining region loops. The protocol accelerates dissociation rates without compromising the binding specificity. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2022)..
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468357 | PMC |
http://dx.doi.org/10.1016/j.xpro.2023.102523 | DOI Listing |
Alzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by hallmark pathologies that affect many brain regions, including the cellular microenvironment with the hippocampus, ultimately leading to profound deficits in cognition. Surprising recent work has shown that factors in the systemic environment regulate the hippocampal cellular niche; age-associated blood-borne factors exacerbate brain aging phenotypes, whereas youth-associated blood-borne factors, including tissue inhibitor of metalloproteinases 2 (TIMP2), reverse or ameliorate features of brain aging. As aging serves as the major risk factor for AD, and recent work shows that systemic factors can regulate AD pathology, we sought to characterize mechanisms by which the systemic environment regulates CNS phenotypes relevant to AD pathology through changes in neuroinflammation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Medical University of South Carolina, Charleston, SC, USA.
Background: Specialized pro-resolving mediators (SPMs) promote inflammatory resolution and homeostasis and are thought to have specific reprogramming effects on hman microglia. Decreased SPM levels have been correlated with chronic neuroinflammation, late-stage Alzheimer's disease (AD) and neuropathology in humans, yet few studies have explored the cellular signatures of resolution. Amyloid is though to bind one target resolution receptor, ChemR23, leading to internalization.
View Article and Find Full Text PDFBackground: Tauopathies are a group of neurodegenerative disorders which are characterized by the accumulation of abnormal tau protein in the brain. However, the mechanistic understanding of pathogenic tau formation and spread within the brain remains elusive. Astrocytes are major immune reactive cells in the brain and have been implicated in exacerbating tau pathology by releasing extracellular vesicles (AEVs) containing pro-inflammatory cytokines and chemokines upon activation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
CEDOC - Nova Medical School - Universidade NOVA de Lisboa, Lisboa, Portugal.
Background: Alzheimer's disease (AD), an untreatable synaptic disorder, is the most frequent cause of dementia. It is still unclear which mechanisms drive the early synapse dysfunction in the most common late-onset AD (LOAD). The second most important LOAD risk gene identified, BIN1, is an endocytic regulator.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of Pittsburgh, Pittsburgh, PA, USA.
Background: Alzheimer's disease (AD) is diagnosed via postmortem detection of extracellular amyloid beta (Aβ) plaques or oligomers and intracellular hyperphosphorylated tau. These canonical pathologies are key players in AD etiology. A complementary line of research suggests that common human pathogens serve as the initial seeding agents which facilitate the pathologies of AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!