Objective: Non-blinded image deblurring with deep learning was performed on blurred numerical brain images without point spread function (PSF) reconstruction to obtain edge artifacts (EA)-free images. This study uses numerical simulation to investigate the mechanism of EA in PSF reconstruction based on the spatial frequency characteristics of EA-free images.
Methods: In 256 × 256 matrix brain images, the signal values of gray matter (GM), white matter, and cerebrospinal fluid were set to 1, 0.25, and 0.05, respectively. We assumed ideal projection data of a two-dimensional (2D) parallel beam with no degradation factors other than detector response blur to precisely grasp EA using the PSF reconstruction algorithm from blurred projection data. The detector response was assumed to be a shift-invariant and one-dimensional (1D) Gaussian function with 2-5 mm full width at half maximum (FWHM). Images without PSF reconstruction (non-PSF), PSF reconstruction without regularization (PSF) and with regularization of relative difference function (PSF-RD) were generated by ordered subset expectation maximization (OSEM). For non-PSF, the image deblurring with a deep image prior (DIP) was applied using a 2D Gaussian function with 2-5 mm FWHM. The 1D object-specific modulation transfer function (1D-OMTF), which is the ratio of 1D amplitude spectrum of the original and reconstructed images, was used as the index of spatial frequency characteristics.
Results: When the detector response was greater than 3 mm FWHM, EA in PSF was observed in GM borders and narrow GM. No remarkable EA was observed in the DIP, and the FWHM estimated from the recovery coefficient for the deblurred image of non-PSF at 5 mm FWHM was reduced to 3 mm or less. PSF of 5 mm FWHM showed higher spatial frequency characteristics than that of DIP up to around 2.2 cycles/cm but was lower than the latter after 3 cycles/cm. PSF-RD showed almost the same spatial frequency characteristics as that of DIP above 3 cycles/cm but was inferior below 3 cycles/cm. PSF-RD has a lower spatial resolution than DIP.
Conclusions: Unlike DIP, PSF lacks high-frequency components around the Nyquist frequency, generating EA. PSF-RD mitigates EA while simultaneously suppressing the signal, diminishing spatial resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12149-023-01862-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!