Development of nitrogen-rich energetic materials has gained much attention because of their remarkable properties including large nitrogen content and energy density, good thermal stability, low sensitivity, good energetic performance, environmental friendliness and so on. Tetrazole has the highest nitrogen and highest energy contents among the stable azoles. The incorporation of diverse explosophoric groups or substituents into the tetrazole skeleton is beneficial to obtain high-nitrogen energetic materials having excellent energetic performance and suitable sensitivity. In this review, the development of high-nitrogen energetic materials based on tetrazole skeleton is highlighted. Initially, the property and utilization of nitrogen-rich energetic materials are presented. After showing the advantage of the tetrazole skeleton, the high-nitrogen energetic materials based on tetrazole are classified and introduced in detail. Based on different types of energetic materials (EMs), the synthesis and properties of nitrogen-rich energetic materials based on mono-, di-, tri- and tetra-tetrazole are summarized in detail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s41061-023-00435-8 | DOI Listing |
J Am Chem Soc
January 2025
College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
A thorium-carbon double bond that corresponds to the sum of theoretical covalent double bond radii has long been sought after in the study of actinide-ligand multiple bonding as a synthetic target. However, the stabilization of this chemical bond remains a great challenge to date, in part because of a relatively poor energetic matching between 5f-/6d- orbitals of thorium and the 2s-/2p- frontier orbitals of carbon. Herein, we report the successful synthesis of a thorium-carbon double bond in a carbon-bridged actinide-transition metal cluster, i.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Saitama University, Saitama City, Saitama 338-8570, Japan.
Rate coefficients for ion-polar-molecule reactions between acetonitrile molecules (CHCN) and nitrogen molecular ions (N), which are of importance to the upper atmospheric chemistry of Saturn's moon Titan, were measured for the first time at low translational temperatures. In the experiments, the reaction between sympathetically cooled N ions embedded in laser-cooled Ca Coulomb crystals and velocity-selected acetonitrile molecules generated using a wavy Stark velocity filter was studied to determine the reaction rate coefficients. Capture rate coefficients calculated by the Su-Chesnavich approach and by the perturbed rotational state theory considering the rotational state distribution of CHCN were compared to the experimental rate coefficients.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
Materials exhibiting both metallic and semiconducting states, including two-dimensional transition metal dichalcogenides (TMDs), have numerous applications. We therefore investigate the effects of axial and shear strains on the phase energetics of pristine and striped TMDs using density functional theory and classical molecular dynamics simulations. We demonstrate that control of the phase distribution can be achieved by the integration of strain engineering and Kirigami techniques.
View Article and Find Full Text PDFThe study aimed to verify the physiological and metabolic parameters associated with the time to task failure (TTF) during cycling exercise performed within the severe-intensity domain. Forty-five healthy and physically active males participated in two independent experiments. In experiment 1, after a graded exercise test, participants underwent constant work rate cycling efforts (CWR) at 115% of peak power output to assess neuromuscular function (Potentiated twitch) pre- and post-exercise.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Astronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710065, China.
The single-atom skeletal editing technology is an efficient method for constructing molecular skeletons, which has broad coverage in synthetic chemistry. However, its potential in the preparation of energetic heterocyclic molecules is grossly underexplored. In this work, an unexpected one-step reaction for the synthesis of novel energetic molecules was discovered which combines single-atom skeletal editing, -dinitromethyl functionalization, and zwitterionization in one step.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!