Co-culturing Chlorella vulgaris and Cystobasidium oligophagum JRC1 in the microbial fuel cell cathode for lipid biosynthesis.

Environ Sci Pollut Res Int

Environmental Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur (IITJ), Jodhpur, Rajasthan, 342037, India.

Published: October 2024

AI Article Synopsis

Article Abstract

This study investigated the effect of co-culturing the photobiont and mycobiont in the microbial fuel cell (MFC) cathode on biomass production, lipid generation, and power output. Chlorella vulgaris provides oxygen and nutrients for the yeast Cystobasidium oligophagum JRC1, while the latter offers CO and quench oxygen for higher algal growth. The MFC with co-culture enhanced the lipid output of biomass by 28.33%, and the total yield and productivity were 1.47 ± 0.18 g/l and 0.123 g/l/day, respectively. Moreover, with co-culture, the open circuit voltage of 685 ± 11 mV was two times higher than algae alone. The specific growth rate (day) at the cathode was 0.367 ± 0.04 in co-culture and 0.288 ± 0.05 with C. vulgaris only. The power density of the system was 5.37 ± 0.21 mW/m with 75.88 ± 1.89% of COD removal. The co-culture thus proved beneficial at the MFC cathode in terms of total energy output as 11.5 ± 0.035 kWh/m, which was 1.4-fold higher than algae alone.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-29232-yDOI Listing

Publication Analysis

Top Keywords

chlorella vulgaris
8
cystobasidium oligophagum
8
oligophagum jrc1
8
microbial fuel
8
fuel cell
8
mfc cathode
8
higher algae
8
co-culturing chlorella
4
vulgaris cystobasidium
4
jrc1 microbial
4

Similar Publications

Resilience of to Simulated Atmospheric Gas Compositions of Mars, Jupiter, and Titan.

Life (Basel)

January 2025

Department of Biology, University of Crete, Voutes University Campus, GR-70013 Heraklion, Crete, Greece.

This study investigates the resilience of the unicellular green microalga to extreme atmospheric conditions simulating those of Mars, Jupiter, and Titan. Using Earth as a control, experiments were conducted under autotrophic and mixotrophic conditions to evaluate the organism's photosynthetic efficiency, oxygen production, and biomass growth over 2, 5, and 12 days. Photosynthetic performance was analyzed through chlorophyll a fluorescence induction (JIP-test), metabolic activity via gas chromatography, and biomass accumulation measurements.

View Article and Find Full Text PDF

Ocean oil spills can severely impact ecosystems and disrupt marine biodiversity and habitats. Microbial remediation is an effective method for removing thin oil slick contamination. In this study, the adsorption and degradation of low-concentration oil spills by Chlorella vulgaris LH-1 immobilized in konjac glucomannan (KGM) aerogel were investigated.

View Article and Find Full Text PDF

This study evaluated the growth performance of and microalgae cultivated in diluted liquid digestate supplemented with CO, comparing their efficiency to that of a conventional synthetic media. The presence of an initial concentration of ammonium of 125 mg N-NH .L combined with the continuous injection of 1% v/v CO enhanced the optimal growth responses and bioremediation potential for both strains in 200-mL cultures.

View Article and Find Full Text PDF

Increasing the sustainability of photoautotrophic microalgae production by minimising freshwater requirements.

N Biotechnol

January 2025

Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Desalination and Photosynthesis Functional Unit, CIESOL Solar Energy Research Centre, Almería 04120, Spain. Electronic address:

There are now several companies that are producing microalgae such as Arthrospira platensis, Chlorella vulgaris, and Dunaliella salina, among others. They are cultivated mainly in large-scale raceway and tubular photobioreactors. Microalgae production represents a sustainable alternative to conventional biomass production.

View Article and Find Full Text PDF

The severe climate change has caused a drastic water level disparity around the globe, which eventually has been one of the biggest problems of this era related to land degradation. This has caused the multidimensional impact on ecology, the environment, and their components. Algae, one of the ancient micro-engineers, are involved in the functioning of soil microcosm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!