AI Article Synopsis

  • * The newly synthesized compounds displayed significantly higher anti-Toxoplasma activity than sulfadiazine, with lower inhibitory concentrations and favorable selectivity indices, indicating their potential as better treatment options.
  • * Notably, the amino derivatives (specifically 3(d-f)) caused observable and severe morphological changes in both extracellular and intracellular tachyzoites, with compound 3f showing the strongest activity against the parasite.

Article Abstract

Toxoplasmosis is an infection that prevails all over the world and is caused by the obligate intracellular protozoan parasite Toxoplasma gondii (T. gondii). Promising novel compounds for the treatment of T. gondii are introduced in the current investigation. In order to test their in vitro potency against T. gondii tachyzoites, six 1,2,3-triazoles-based sulfonamide scaffolds with terminal NH or OH group were prepared and investigated as sulfadiazine equivalents. When compared to sulfadiazine, which served as a positive control, hybrid molecules showed much more anti-Toxoplasma activity. The results showed that the IC of the examined compounds 3(a-f) were recoded as 0.07492 μM, 0.07455 μM, 0.0392 μM, 0.03124 μM, 0.0533 μM, and 0.01835 μM, respectively, while the sulfadiazine exhibited 0.1852 μM. The studied 1,2,3-triazole-sulfadrug molecular conjugates 3(a-f) revealed selectivity index of 10.4, 8.9, 25.4, 21, 8.3, and 29; respectively. The current study focused on the newly synthesized amino derivatives 3(d-f), as they contain the more potent amino groups which are recognized to be essential elements and promote better biological activity. Extracellular tachyzoites underwent striking morphological alterations after 2 h of treatment as seen by scanning electron microscopy (SEM). Additionally, the intracellular tachyzoite exposed to the newly synthesized amino derivatives 3(d-f) for a 24-h period of treatment revealed damaged and altered morphology by transmission electron microscopic (TEM) indicating cytopathic effects. Moreover, compound 3f underwent the most pronounced changes, indicating that it had the strongest activity against T. gondii.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495491PMC
http://dx.doi.org/10.1007/s00436-023-07936-xDOI Listing

Publication Analysis

Top Keywords

newly synthesized
8
synthesized amino
8
amino derivatives
8
derivatives 3d-f
8
μm
7
gondii
5
sulfadiazine
4
sulfadiazine analogs
4
analogs anti-toxoplasma
4
anti-toxoplasma vitro
4

Similar Publications

We present a novel, highly customizable glutathione-responsive nanogel (NG) platform for efficient mRNA delivery with precise mRNA payload release control. Optimization of various cationic monomers, including newly synthesized cationic polyarginine, polyhistidine, and acrylated guanidine monomers, allowed fine-tuning of NG properties for mRNA binding. By incorporating a poly(ethylene) glycol-based disulphide crosslinker, we achieved glutathione-triggered mRNA release, enabling targeted intracellular delivery.

View Article and Find Full Text PDF

Here, we developed a novel, cost-effective fluorescence light-up biosensor for Pb detection based on a label-free G-quadruplex combined with modified thioflavin T (ThT) derivatives. Among the various G-quadruplex sequences tested, only T2 exhibited fluorescence light-up properties upon interacting with the modified ThT derivatives in the presence of Pb. To enhance the Pb sensing system, we also compared modified ThT derivatives, including the newly synthesized propyl-substituted ThT (ThT-P) and butyl-substituted ThT (ThT-B).

View Article and Find Full Text PDF

Hydroxycitric acid reconstructs damaged articular cartilages by modifying the metabolic cascade in chondrogenic cells.

Osteoarthr Cartil Open

March 2025

Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan.

Objective: Osteoarthritis, a degenerative joint disease, requires innovative therapies due to the limited ability of cartilage to regenerate. Since mesenchymal stem cells (MSCs) provide a cell source for chondrogenic cells, we hypothesize that chemicals capable of enhancing the chondrogenic potential of MSCs with transforming growth factor-beta (TGFβ) in vitro may similarly promote chondrogenesis in articular cartilage in vivo.

Design: Chemical compounds that enhance the TGFβ signaling for chondrogenesis were investigated utilizing mesenchymal stem cells derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Decavanadate Compound Displays In Vitro and In Vivo Antitumor Effect on Melanoma Models.

Bioinorg Chem Appl

January 2025

Institut Pasteur de Tunis, LR20IPT01 Biomolécules, Venins et Application Théranostiques (LBVAT), University of Tunis El Manar, Tunis 1002, Tunisia.

The efficacy of available treatments for melanoma is limited by side effects and the rapidly emerging resistance to treatment. In this context, the decavanadate compounds represent promising tools to design efficient therapeutic agents. In our study, we synthesized a dimagnesium disodium decavanadate icosahydrate compound (MgNaVO·20HO) and investigated its structure stability as well as its antimelanoma effects.

View Article and Find Full Text PDF

Context: Inspired by the newly synthesized endohedral fullerene T CH@C (1) and based on extensive density functional theory calculations, we predict herein a series of endohedral borafullerenes C CH@BC (4), T BH@BC (5), C HO@BC (6), C NH@BC (7), and T C@BC (8) which possess a BC (3) shell isovalent with C, with the neutral D C@BC (9) obtained from C@BC (8) by symmetric C─B substitutions. Detailed adaptive natural density partitioning (AdNDP) bonding analyses and iso-chemical shielding surfaces (ICSSs) calculations indicate that these core-shell species are spherically aromatic in nature, rendering high stability to the systems. More interestingly, based on the calculated effective donor-acceptor interaction between LP(O) → LV(B@BC) in HO@BC (6), we propose the concept of boron bond (BB) in chemistry which is defined as the in-phase orbital overlap between an electronegative atom A as lone-pair (LP) donor and an electron-deficient boron atom with a lone vacant (LV) orbital as LP acceptor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!